Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve for [tex]\( f(2) \)[/tex] when given the function [tex]\( f(x) = 2x^2 + 5\sqrt{x+2} \)[/tex], follow these steps:
1. Substitute [tex]\( x = 2 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(2) = 2(2)^2 + 5\sqrt{2 + 2} \][/tex]
2. Evaluate the squared term [tex]\( (2)^2 \)[/tex]:
[tex]\[ (2)^2 = 4 \][/tex]
3. Multiply the squared term by the coefficient 2:
[tex]\[ 2 \times 4 = 8 \][/tex]
4. Substitute [tex]\( x = 2 \)[/tex] into the square root term [tex]\( \sqrt{(2 + 2)} \)[/tex]:
[tex]\[ \sqrt{2 + 2} = \sqrt{4} \][/tex]
5. Evaluate the square root [tex]\( \sqrt{4} \)[/tex]:
[tex]\[ \sqrt{4} = 2 \][/tex]
6. Multiply the square root term by the coefficient 5:
[tex]\[ 5 \times 2 = 10 \][/tex]
7. Add the results of the two terms together:
[tex]\[ 8 + 10 = 18 \][/tex]
Therefore, the value of [tex]\( f(2) \)[/tex] is [tex]\( 18 \)[/tex]. [tex]\( f(2) = 18 \)[/tex]
1. Substitute [tex]\( x = 2 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(2) = 2(2)^2 + 5\sqrt{2 + 2} \][/tex]
2. Evaluate the squared term [tex]\( (2)^2 \)[/tex]:
[tex]\[ (2)^2 = 4 \][/tex]
3. Multiply the squared term by the coefficient 2:
[tex]\[ 2 \times 4 = 8 \][/tex]
4. Substitute [tex]\( x = 2 \)[/tex] into the square root term [tex]\( \sqrt{(2 + 2)} \)[/tex]:
[tex]\[ \sqrt{2 + 2} = \sqrt{4} \][/tex]
5. Evaluate the square root [tex]\( \sqrt{4} \)[/tex]:
[tex]\[ \sqrt{4} = 2 \][/tex]
6. Multiply the square root term by the coefficient 5:
[tex]\[ 5 \times 2 = 10 \][/tex]
7. Add the results of the two terms together:
[tex]\[ 8 + 10 = 18 \][/tex]
Therefore, the value of [tex]\( f(2) \)[/tex] is [tex]\( 18 \)[/tex]. [tex]\( f(2) = 18 \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.