Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To evaluate and simplify the difference quotient for the function [tex]\( f(x) = 4x + 10 \)[/tex], we'll go through the following steps:
1. Definition of the Difference Quotient:
The difference quotient is given by the formula:
[tex]\[ \frac{f(x + h) - f(x)}{h} \][/tex]
where [tex]\( h \)[/tex] is a small increment and [tex]\( f(x + h) \)[/tex] is the function evaluated at [tex]\( x + h \)[/tex].
2. Evaluate [tex]\( f(x + h) \)[/tex]:
We need to find the value of the function when [tex]\( x \)[/tex] is replaced by [tex]\( x + h \)[/tex]. For our function [tex]\( f(x) = 4x + 10 \)[/tex]:
[tex]\[ f(x + h) = 4(x + h) + 10 \][/tex]
Simplifying this, we get:
[tex]\[ f(x + h) = 4x + 4h + 10 \][/tex]
3. Form the Difference Quotient:
Substitute [tex]\( f(x + h) \)[/tex] and [tex]\( f(x) \)[/tex] into the difference quotient formula:
[tex]\[ \frac{f(x + h) - f(x)}{h} = \frac{(4x + 4h + 10) - (4x + 10)}{h} \][/tex]
Simplifying the numerator:
[tex]\[ \frac{(4x + 4h + 10) - 4x - 10}{h} = \frac{4h}{h} \][/tex]
4. Simplify the Difference Quotient:
Simplify the expression by canceling out [tex]\( h \)[/tex]:
[tex]\[ \frac{4h}{h} = 4 \][/tex]
Therefore, the simplified difference quotient for the function [tex]\( f(x) = 4x + 10 \)[/tex] is:
[tex]\[ 4 \][/tex]
The evaluated and simplified difference quotient confirms that the rate of change of the function [tex]\( f(x) \)[/tex] is consistently 4.
1. Definition of the Difference Quotient:
The difference quotient is given by the formula:
[tex]\[ \frac{f(x + h) - f(x)}{h} \][/tex]
where [tex]\( h \)[/tex] is a small increment and [tex]\( f(x + h) \)[/tex] is the function evaluated at [tex]\( x + h \)[/tex].
2. Evaluate [tex]\( f(x + h) \)[/tex]:
We need to find the value of the function when [tex]\( x \)[/tex] is replaced by [tex]\( x + h \)[/tex]. For our function [tex]\( f(x) = 4x + 10 \)[/tex]:
[tex]\[ f(x + h) = 4(x + h) + 10 \][/tex]
Simplifying this, we get:
[tex]\[ f(x + h) = 4x + 4h + 10 \][/tex]
3. Form the Difference Quotient:
Substitute [tex]\( f(x + h) \)[/tex] and [tex]\( f(x) \)[/tex] into the difference quotient formula:
[tex]\[ \frac{f(x + h) - f(x)}{h} = \frac{(4x + 4h + 10) - (4x + 10)}{h} \][/tex]
Simplifying the numerator:
[tex]\[ \frac{(4x + 4h + 10) - 4x - 10}{h} = \frac{4h}{h} \][/tex]
4. Simplify the Difference Quotient:
Simplify the expression by canceling out [tex]\( h \)[/tex]:
[tex]\[ \frac{4h}{h} = 4 \][/tex]
Therefore, the simplified difference quotient for the function [tex]\( f(x) = 4x + 10 \)[/tex] is:
[tex]\[ 4 \][/tex]
The evaluated and simplified difference quotient confirms that the rate of change of the function [tex]\( f(x) \)[/tex] is consistently 4.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.