At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the system of linear equations using the substitution method, follow these steps:
Given the system:
[tex]\[ \begin{array}{l} 5x - 2y = 49 \quad \text{(Equation 1)} \\ -6x + y = -49 \quad \text{(Equation 2)} \end{array} \][/tex]
1. Solve Equation 2 for [tex]\(y\)[/tex]:
[tex]\[ -6x + y = -49 \][/tex]
[tex]\[ y = 6x - 49 \][/tex]
2. Substitute [tex]\(y\)[/tex] in Equation 1:
Replace [tex]\(y\)[/tex] in Equation 1 with the expression obtained from Equation 2:
[tex]\[ 5x - 2(6x - 49) = 49 \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ 5x - 12x + 98 = 49 \][/tex]
Combine like terms:
[tex]\[ -7x + 98 = 49 \][/tex]
Isolate [tex]\(x\)[/tex] by first subtracting 98 from both sides:
[tex]\[ -7x = 49 - 98 \][/tex]
[tex]\[ -7x = -49 \][/tex]
Divide both sides by -7:
[tex]\[ x = 7 \][/tex]
3. Substitute [tex]\(x = 7\)[/tex] back into the expression for [tex]\(y\)[/tex]:
Use the value of [tex]\(x\)[/tex] in the equation [tex]\( y = 6x - 49 \)[/tex]:
[tex]\[ y = 6(7) - 49 \][/tex]
Simplify the right-hand side:
[tex]\[ y = 42 - 49 \][/tex]
[tex]\[ y = -7 \][/tex]
So, the solution to the system of equations is:
[tex]\[ (x, y) = (7, -7) \][/tex]
Therefore, the system has one solution:
[tex]\[ \boxed{(7, -7)} \][/tex]
Given the system:
[tex]\[ \begin{array}{l} 5x - 2y = 49 \quad \text{(Equation 1)} \\ -6x + y = -49 \quad \text{(Equation 2)} \end{array} \][/tex]
1. Solve Equation 2 for [tex]\(y\)[/tex]:
[tex]\[ -6x + y = -49 \][/tex]
[tex]\[ y = 6x - 49 \][/tex]
2. Substitute [tex]\(y\)[/tex] in Equation 1:
Replace [tex]\(y\)[/tex] in Equation 1 with the expression obtained from Equation 2:
[tex]\[ 5x - 2(6x - 49) = 49 \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ 5x - 12x + 98 = 49 \][/tex]
Combine like terms:
[tex]\[ -7x + 98 = 49 \][/tex]
Isolate [tex]\(x\)[/tex] by first subtracting 98 from both sides:
[tex]\[ -7x = 49 - 98 \][/tex]
[tex]\[ -7x = -49 \][/tex]
Divide both sides by -7:
[tex]\[ x = 7 \][/tex]
3. Substitute [tex]\(x = 7\)[/tex] back into the expression for [tex]\(y\)[/tex]:
Use the value of [tex]\(x\)[/tex] in the equation [tex]\( y = 6x - 49 \)[/tex]:
[tex]\[ y = 6(7) - 49 \][/tex]
Simplify the right-hand side:
[tex]\[ y = 42 - 49 \][/tex]
[tex]\[ y = -7 \][/tex]
So, the solution to the system of equations is:
[tex]\[ (x, y) = (7, -7) \][/tex]
Therefore, the system has one solution:
[tex]\[ \boxed{(7, -7)} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.