Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's solve this problem step-by-step.
### Given Information:
- Initial pressure of the tire, [tex]\( P_1 = 3.00 \text{ atm} \)[/tex]
- Initial temperature of the tire, [tex]\( T_1 = 30.0^{\circ}C \)[/tex]
- Final temperature of the tire, [tex]\( T_2 = -5.00^{\circ}C \)[/tex]
- We need to find the final pressure, [tex]\( P_2 \)[/tex], assuming no volume change in the tire.
### Formula to Use:
The problem states that we should use the formula for the relationship between pressure and temperature when volume is constant:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
### Step-by-Step Solution:
1. Convert Temperatures from Celsius to Kelvin:
Temperatures need to be in Kelvin for the formula to work correctly, as the Kelvin scale is the absolute temperature scale used in gas law equations.
[tex]\[ T_1(K) = T_1(^{\circ}C) + 273.15 = 30.0 + 273.15 = 303.15 \text{ K} \][/tex]
[tex]\[ T_2(K) = T_2(^{\circ}C) + 273.15 = -5.00 + 273.15 = 268.15 \text{ K} \][/tex]
2. Use the Formula to Find the Final Pressure:
Rearrange the equation [tex]\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)[/tex] to solve for [tex]\(P_2\)[/tex]:
[tex]\[ P_2 = P_1 \times \frac{T_2}{T_1} \][/tex]
3. Substitute the Known Values:
[tex]\[ P_2 = 3.00 \text{ atm} \times \frac{268.15 \text{ K}}{303.15 \text{ K}} \][/tex]
4. Calculate the Final Pressure:
[tex]\[ P_2 \approx 3.00 \times 0.884 = 2.65 \text{ atm} \][/tex]
So, the final pressure in the tire, when the temperature decreases to [tex]\(-5.00^{\circ}C\)[/tex], is approximately [tex]\(2.65\)[/tex] atm. The intermediate values used, specifically the converted temperatures, are [tex]\(303.15\)[/tex] K and [tex]\(268.15\)[/tex] K.
### Given Information:
- Initial pressure of the tire, [tex]\( P_1 = 3.00 \text{ atm} \)[/tex]
- Initial temperature of the tire, [tex]\( T_1 = 30.0^{\circ}C \)[/tex]
- Final temperature of the tire, [tex]\( T_2 = -5.00^{\circ}C \)[/tex]
- We need to find the final pressure, [tex]\( P_2 \)[/tex], assuming no volume change in the tire.
### Formula to Use:
The problem states that we should use the formula for the relationship between pressure and temperature when volume is constant:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
### Step-by-Step Solution:
1. Convert Temperatures from Celsius to Kelvin:
Temperatures need to be in Kelvin for the formula to work correctly, as the Kelvin scale is the absolute temperature scale used in gas law equations.
[tex]\[ T_1(K) = T_1(^{\circ}C) + 273.15 = 30.0 + 273.15 = 303.15 \text{ K} \][/tex]
[tex]\[ T_2(K) = T_2(^{\circ}C) + 273.15 = -5.00 + 273.15 = 268.15 \text{ K} \][/tex]
2. Use the Formula to Find the Final Pressure:
Rearrange the equation [tex]\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)[/tex] to solve for [tex]\(P_2\)[/tex]:
[tex]\[ P_2 = P_1 \times \frac{T_2}{T_1} \][/tex]
3. Substitute the Known Values:
[tex]\[ P_2 = 3.00 \text{ atm} \times \frac{268.15 \text{ K}}{303.15 \text{ K}} \][/tex]
4. Calculate the Final Pressure:
[tex]\[ P_2 \approx 3.00 \times 0.884 = 2.65 \text{ atm} \][/tex]
So, the final pressure in the tire, when the temperature decreases to [tex]\(-5.00^{\circ}C\)[/tex], is approximately [tex]\(2.65\)[/tex] atm. The intermediate values used, specifically the converted temperatures, are [tex]\(303.15\)[/tex] K and [tex]\(268.15\)[/tex] K.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.