Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's solve this problem step-by-step.
### Given Information:
- Initial pressure of the tire, [tex]\( P_1 = 3.00 \text{ atm} \)[/tex]
- Initial temperature of the tire, [tex]\( T_1 = 30.0^{\circ}C \)[/tex]
- Final temperature of the tire, [tex]\( T_2 = -5.00^{\circ}C \)[/tex]
- We need to find the final pressure, [tex]\( P_2 \)[/tex], assuming no volume change in the tire.
### Formula to Use:
The problem states that we should use the formula for the relationship between pressure and temperature when volume is constant:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
### Step-by-Step Solution:
1. Convert Temperatures from Celsius to Kelvin:
Temperatures need to be in Kelvin for the formula to work correctly, as the Kelvin scale is the absolute temperature scale used in gas law equations.
[tex]\[ T_1(K) = T_1(^{\circ}C) + 273.15 = 30.0 + 273.15 = 303.15 \text{ K} \][/tex]
[tex]\[ T_2(K) = T_2(^{\circ}C) + 273.15 = -5.00 + 273.15 = 268.15 \text{ K} \][/tex]
2. Use the Formula to Find the Final Pressure:
Rearrange the equation [tex]\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)[/tex] to solve for [tex]\(P_2\)[/tex]:
[tex]\[ P_2 = P_1 \times \frac{T_2}{T_1} \][/tex]
3. Substitute the Known Values:
[tex]\[ P_2 = 3.00 \text{ atm} \times \frac{268.15 \text{ K}}{303.15 \text{ K}} \][/tex]
4. Calculate the Final Pressure:
[tex]\[ P_2 \approx 3.00 \times 0.884 = 2.65 \text{ atm} \][/tex]
So, the final pressure in the tire, when the temperature decreases to [tex]\(-5.00^{\circ}C\)[/tex], is approximately [tex]\(2.65\)[/tex] atm. The intermediate values used, specifically the converted temperatures, are [tex]\(303.15\)[/tex] K and [tex]\(268.15\)[/tex] K.
### Given Information:
- Initial pressure of the tire, [tex]\( P_1 = 3.00 \text{ atm} \)[/tex]
- Initial temperature of the tire, [tex]\( T_1 = 30.0^{\circ}C \)[/tex]
- Final temperature of the tire, [tex]\( T_2 = -5.00^{\circ}C \)[/tex]
- We need to find the final pressure, [tex]\( P_2 \)[/tex], assuming no volume change in the tire.
### Formula to Use:
The problem states that we should use the formula for the relationship between pressure and temperature when volume is constant:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
### Step-by-Step Solution:
1. Convert Temperatures from Celsius to Kelvin:
Temperatures need to be in Kelvin for the formula to work correctly, as the Kelvin scale is the absolute temperature scale used in gas law equations.
[tex]\[ T_1(K) = T_1(^{\circ}C) + 273.15 = 30.0 + 273.15 = 303.15 \text{ K} \][/tex]
[tex]\[ T_2(K) = T_2(^{\circ}C) + 273.15 = -5.00 + 273.15 = 268.15 \text{ K} \][/tex]
2. Use the Formula to Find the Final Pressure:
Rearrange the equation [tex]\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)[/tex] to solve for [tex]\(P_2\)[/tex]:
[tex]\[ P_2 = P_1 \times \frac{T_2}{T_1} \][/tex]
3. Substitute the Known Values:
[tex]\[ P_2 = 3.00 \text{ atm} \times \frac{268.15 \text{ K}}{303.15 \text{ K}} \][/tex]
4. Calculate the Final Pressure:
[tex]\[ P_2 \approx 3.00 \times 0.884 = 2.65 \text{ atm} \][/tex]
So, the final pressure in the tire, when the temperature decreases to [tex]\(-5.00^{\circ}C\)[/tex], is approximately [tex]\(2.65\)[/tex] atm. The intermediate values used, specifically the converted temperatures, are [tex]\(303.15\)[/tex] K and [tex]\(268.15\)[/tex] K.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.