Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Which statement best describes [tex]\( f(x) = -2 \sqrt{x-7} + 1 \)[/tex] ?

A. -6 is in the domain of [tex]\( f(x) \)[/tex] but not in the range of [tex]\( f(x) \)[/tex].

B. -6 is not in the domain of [tex]\( f(x) \)[/tex] but is in the range of [tex]\( f(x) \)[/tex].

C. -6 is in the domain of [tex]\( f(x) \)[/tex] and in the range of [tex]\( f(x) \)[/tex].

D. -6 is neither in the domain of [tex]\( f(x) \)[/tex] nor in the range of [tex]\( f(x) \)[/tex].


Sagot :

To determine which statement best describes the function [tex]\( f(x) = -2 \sqrt{x-7} + 1 \)[/tex] in relation to the value [tex]\(-6\)[/tex], let's carefully analyze the domain and range of the function and the given value.

1. Domain Analysis:
The domain of [tex]\( f(x) \)[/tex] is determined by the expression inside the square root [tex]\(\sqrt{x-7}\)[/tex]. For the square root to be defined, the expression inside must be non-negative:
[tex]\[ x - 7 \geq 0 \implies x \geq 7 \][/tex]
Therefore, the domain of [tex]\( f(x) \)[/tex] is [tex]\( [7, \infty) \)[/tex].

2. Range Analysis:
To find the range of [tex]\( f(x) \)[/tex], we evaluate the bounds of the function:
- At the lower boundary of the domain ([tex]\( x = 7 \)[/tex]), the function value is:
[tex]\[ f(7) = -2 \sqrt{7-7} + 1 = -2 \cdot 0 + 1 = 1 \][/tex]
- As [tex]\( x \to \infty \)[/tex], [tex]\( \sqrt{x-7} \to \infty \)[/tex] and hence [tex]\( -2 \sqrt{x-7} \to -\infty \)[/tex], making [tex]\( f(x) \)[/tex] approach [tex]\( -\infty \)[/tex].

Therefore, the range is [tex]\( (-\infty, 1] \)[/tex].

3. Checking [tex]\(-6\)[/tex]:
- Domain Check:
[tex]\(-6 < 7\)[/tex], which means [tex]\(-6\)[/tex] is not in the domain of [tex]\( f(x) \)[/tex].

- Range Check:
We need to check if [tex]\(-6\)[/tex] can be an output of [tex]\( f(x) \)[/tex]. Thus, we solve for [tex]\( x \)[/tex] when [tex]\( f(x) = -6 \)[/tex]:
[tex]\[ -6 = -2 \sqrt{x-7} + 1 \][/tex]
Rearranging the equation:
[tex]\[ -6 - 1 = -2 \sqrt{x-7} \implies -7 = -2 \sqrt{x-7} \implies 7 = 2 \sqrt{x-7} \implies \sqrt{x-7} = \frac{7}{2} \implies x-7 = \left( \frac{7}{2} \right)^2 = \frac{49}{4} \implies x = 7 + \frac{49}{4} = \frac{77}{4} \][/tex]
Since [tex]\( x = \frac{77}{4} = 19.25 \geq 7 \)[/tex], [tex]\(-6\)[/tex] is indeed in the range of [tex]\( f(x) \)[/tex].

Combining the results:
- [tex]\(-6\)[/tex] is not in the domain of [tex]\( f(x) \)[/tex].
- [tex]\(-6\)[/tex] is in the range of [tex]\( f(x) \)[/tex].

Therefore, the best statement describing the function [tex]\( f(x) = -2 \sqrt{x-7} + 1 \)[/tex] is:
-6 is not in the domain of [tex]\( f(x) \)[/tex] but is in the range of [tex]\( f(x) \)[/tex].