Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's start with question 13.
### 13. If [tex]\((k+2)x^2 - (k+2)x - 1 = 0\)[/tex] has one real root, then the value of [tex]\(k\)[/tex] is:
To determine the values of [tex]\(k\)[/tex] for which the given quadratic equation has one real root, we need to set the discriminant of the quadratic equation to zero. The general form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex], with the discriminant given by [tex]\(\Delta = b^2 - 4ac\)[/tex].
For the given equation [tex]\((k+2)x^2 - (k+2)x - 1 = 0\)[/tex], let's identify the coefficients:
- [tex]\(a = k + 2\)[/tex]
- [tex]\(b = -(k + 2)\)[/tex]
- [tex]\(c = -1\)[/tex]
The discriminant [tex]\(\Delta\)[/tex] is calculated as:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \Delta = [-(k+2)]^2 - 4(k+2)(-1) \][/tex]
Simplify the discriminant:
[tex]\[ \Delta = (k+2)^2 - 4(k+2)(-1) \][/tex]
[tex]\[ \Delta = (k+2)^2 + 4(k+2) \][/tex]
[tex]\[ \Delta = (k+2)^2 + 4(k+2) \][/tex]
[tex]\[ \Delta = (k+2)[(k+2) + 4] \][/tex]
[tex]\[ \Delta = (k+2)(k+2+4) \][/tex]
[tex]\[ \Delta = (k+2)(k+6) \][/tex]
For the quadratic equation to have exactly one real root, the discriminant must be equal to zero:
[tex]\[ (k+2)(k+6) = 0 \][/tex]
Solving for [tex]\(k\)[/tex]:
[tex]\[ k+2 = 0 \quad \text{or} \quad k+6 = 0 \][/tex]
[tex]\[ k = -2 \quad \text{or} \quad k = -6 \][/tex]
Thus, the values of [tex]\(k\)[/tex] that make the equation have one real root are [tex]\(-2\)[/tex] and [tex]\(-6\)[/tex]. The answer is:
C. -6 or -2
---
### 14. The simplified form of [tex]\(\frac{(a+b)^2 - 1}{a+b+1}\)[/tex] is:
First, let's rewrite the numerator and the denominator:
[tex]\[ \text{Numerator: } (a+b)^2 - 1 \][/tex]
[tex]\[ \text{Denominator: } a+b+1 \][/tex]
The numerator [tex]\((a+b)^2 - 1\)[/tex] can be factored as a difference of squares:
[tex]\[ (a+b)^2 - 1 = (a+b)^2 - 1^2 = [(a+b) - 1][(a+b) + 1] \][/tex]
[tex]\[ (a+b)^2 - 1 = (a+b-1)(a+b+1) \][/tex]
So, the expression becomes:
[tex]\[ \frac{(a+b-1)(a+b+1)}{a+b+1} \][/tex]
We can cancel out the common factor [tex]\(a+b+1\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{(a+b-1)(a+b+1)}{a+b+1} = a+b-1 \][/tex]
Thus, the simplified form of the expression is:
D. [tex]\(a+b-1\)[/tex]
### 13. If [tex]\((k+2)x^2 - (k+2)x - 1 = 0\)[/tex] has one real root, then the value of [tex]\(k\)[/tex] is:
To determine the values of [tex]\(k\)[/tex] for which the given quadratic equation has one real root, we need to set the discriminant of the quadratic equation to zero. The general form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex], with the discriminant given by [tex]\(\Delta = b^2 - 4ac\)[/tex].
For the given equation [tex]\((k+2)x^2 - (k+2)x - 1 = 0\)[/tex], let's identify the coefficients:
- [tex]\(a = k + 2\)[/tex]
- [tex]\(b = -(k + 2)\)[/tex]
- [tex]\(c = -1\)[/tex]
The discriminant [tex]\(\Delta\)[/tex] is calculated as:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \Delta = [-(k+2)]^2 - 4(k+2)(-1) \][/tex]
Simplify the discriminant:
[tex]\[ \Delta = (k+2)^2 - 4(k+2)(-1) \][/tex]
[tex]\[ \Delta = (k+2)^2 + 4(k+2) \][/tex]
[tex]\[ \Delta = (k+2)^2 + 4(k+2) \][/tex]
[tex]\[ \Delta = (k+2)[(k+2) + 4] \][/tex]
[tex]\[ \Delta = (k+2)(k+2+4) \][/tex]
[tex]\[ \Delta = (k+2)(k+6) \][/tex]
For the quadratic equation to have exactly one real root, the discriminant must be equal to zero:
[tex]\[ (k+2)(k+6) = 0 \][/tex]
Solving for [tex]\(k\)[/tex]:
[tex]\[ k+2 = 0 \quad \text{or} \quad k+6 = 0 \][/tex]
[tex]\[ k = -2 \quad \text{or} \quad k = -6 \][/tex]
Thus, the values of [tex]\(k\)[/tex] that make the equation have one real root are [tex]\(-2\)[/tex] and [tex]\(-6\)[/tex]. The answer is:
C. -6 or -2
---
### 14. The simplified form of [tex]\(\frac{(a+b)^2 - 1}{a+b+1}\)[/tex] is:
First, let's rewrite the numerator and the denominator:
[tex]\[ \text{Numerator: } (a+b)^2 - 1 \][/tex]
[tex]\[ \text{Denominator: } a+b+1 \][/tex]
The numerator [tex]\((a+b)^2 - 1\)[/tex] can be factored as a difference of squares:
[tex]\[ (a+b)^2 - 1 = (a+b)^2 - 1^2 = [(a+b) - 1][(a+b) + 1] \][/tex]
[tex]\[ (a+b)^2 - 1 = (a+b-1)(a+b+1) \][/tex]
So, the expression becomes:
[tex]\[ \frac{(a+b-1)(a+b+1)}{a+b+1} \][/tex]
We can cancel out the common factor [tex]\(a+b+1\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{(a+b-1)(a+b+1)}{a+b+1} = a+b-1 \][/tex]
Thus, the simplified form of the expression is:
D. [tex]\(a+b-1\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.