Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the domain of the function [tex]\( y = \sqrt[3]{x - 1} \)[/tex], we need to understand the behavior of the cube root function.
The cube root function [tex]\( \sqrt[3]{x} \)[/tex] is defined for all real numbers. This means that there are no restrictions on the input [tex]\( x \)[/tex] for the cube root function. In other words, [tex]\( \sqrt[3]{x} \)[/tex] can take any real number as an input and produce a real number as output.
Now, when considering the function [tex]\( y = \sqrt[3]{x - 1} \)[/tex], we are looking at a shift of the cube root function by 1 unit to the right. This shift does not affect the domain of the function in terms of the possible input values for [tex]\( x \)[/tex].
Since the cube root function is defined for all real numbers, and the shift [tex]\( x - 1 \)[/tex] is simply a translation of the input along the x-axis, the domain remains all real numbers.
Thus, the domain of [tex]\( y = \sqrt[3]{x - 1} \)[/tex] is all real numbers:
[tex]\[ -\infty < x < \infty \][/tex]
Therefore, the correct option corresponding to this domain is:
[tex]\[ -\infty < x < \infty \][/tex]
The cube root function [tex]\( \sqrt[3]{x} \)[/tex] is defined for all real numbers. This means that there are no restrictions on the input [tex]\( x \)[/tex] for the cube root function. In other words, [tex]\( \sqrt[3]{x} \)[/tex] can take any real number as an input and produce a real number as output.
Now, when considering the function [tex]\( y = \sqrt[3]{x - 1} \)[/tex], we are looking at a shift of the cube root function by 1 unit to the right. This shift does not affect the domain of the function in terms of the possible input values for [tex]\( x \)[/tex].
Since the cube root function is defined for all real numbers, and the shift [tex]\( x - 1 \)[/tex] is simply a translation of the input along the x-axis, the domain remains all real numbers.
Thus, the domain of [tex]\( y = \sqrt[3]{x - 1} \)[/tex] is all real numbers:
[tex]\[ -\infty < x < \infty \][/tex]
Therefore, the correct option corresponding to this domain is:
[tex]\[ -\infty < x < \infty \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.