Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's work through the problem step-by-step to understand the exponential function that decays at one-half the rate and evaluate it over the given interval [tex]\([-2, 0]\)[/tex].
### Step 1: Understand the Exponential Decay Function
Let's start by defining an exponential decay function [tex]\( f(x) \)[/tex]. A general exponential decay function can be written in the form:
[tex]\[ f(x) = e^{kx} \][/tex]
where [tex]\( k \)[/tex] is a constant.
### Step 2: Determine the Decay Rate
The problem states that the exponential function decays at one-half the rate. If the standard decay rate is 1, then a decay at one-half the rate would imply that [tex]\( k = -0.5 \)[/tex].
So, our function is:
[tex]\[ f(x) = e^{-0.5x} \][/tex]
### Step 3: Evaluate the Function at the Interval Bounds
We need to evaluate the function [tex]\( f(x) \)[/tex] at the lower bound [tex]\( x = -2 \)[/tex] and the upper bound [tex]\( x = 0 \)[/tex].
#### Lower Bound: [tex]\( x = -2 \)[/tex]
Substitute [tex]\( x = -2 \)[/tex] into the function:
[tex]\[ f(-2) = e^{-0.5(-2)} = e^1 = e \][/tex]
Based on the value of [tex]\( e \)[/tex]:
[tex]\[ f(-2) = 2.718281828459045 \][/tex]
#### Upper Bound: [tex]\( x = 0 \)[/tex]
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = e^{-0.5(0)} = e^0 = 1 \][/tex]
### Step 4: Conclusion
The value of the exponential function [tex]\( f(x) = e^{-0.5x} \)[/tex] evaluated at the lower bound [tex]\( x = -2 \)[/tex] is approximately 2.718281828459045, and at the upper bound [tex]\( x = 0 \)[/tex] is exactly 1.
Thus, the function values over the interval [tex]\([-2, 0]\)[/tex] are:
[tex]\[ f(-2) \approx 2.718281828459045 \][/tex]
[tex]\[ f(0) = 1 \][/tex]
### Step 1: Understand the Exponential Decay Function
Let's start by defining an exponential decay function [tex]\( f(x) \)[/tex]. A general exponential decay function can be written in the form:
[tex]\[ f(x) = e^{kx} \][/tex]
where [tex]\( k \)[/tex] is a constant.
### Step 2: Determine the Decay Rate
The problem states that the exponential function decays at one-half the rate. If the standard decay rate is 1, then a decay at one-half the rate would imply that [tex]\( k = -0.5 \)[/tex].
So, our function is:
[tex]\[ f(x) = e^{-0.5x} \][/tex]
### Step 3: Evaluate the Function at the Interval Bounds
We need to evaluate the function [tex]\( f(x) \)[/tex] at the lower bound [tex]\( x = -2 \)[/tex] and the upper bound [tex]\( x = 0 \)[/tex].
#### Lower Bound: [tex]\( x = -2 \)[/tex]
Substitute [tex]\( x = -2 \)[/tex] into the function:
[tex]\[ f(-2) = e^{-0.5(-2)} = e^1 = e \][/tex]
Based on the value of [tex]\( e \)[/tex]:
[tex]\[ f(-2) = 2.718281828459045 \][/tex]
#### Upper Bound: [tex]\( x = 0 \)[/tex]
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = e^{-0.5(0)} = e^0 = 1 \][/tex]
### Step 4: Conclusion
The value of the exponential function [tex]\( f(x) = e^{-0.5x} \)[/tex] evaluated at the lower bound [tex]\( x = -2 \)[/tex] is approximately 2.718281828459045, and at the upper bound [tex]\( x = 0 \)[/tex] is exactly 1.
Thus, the function values over the interval [tex]\([-2, 0]\)[/tex] are:
[tex]\[ f(-2) \approx 2.718281828459045 \][/tex]
[tex]\[ f(0) = 1 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.