Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To analyze the trigonometric function [tex]\( y = \frac{1}{3} \cos (x + 5) \)[/tex], we need to determine three specific characteristics: the amplitude, the period, and the phase shift of the function. Let's break down each component:
1. Amplitude:
The amplitude of a cosine function [tex]\(\cos\)[/tex] is the coefficient that multiplies the function. In the given equation [tex]\( y = \frac{1}{3} \cos (x + 5) \)[/tex], the coefficient in front of the cosine function is [tex]\(\frac{1}{3}\)[/tex]. Hence, the amplitude is:
[tex]\[ \text{Amplitude} = \frac{1}{3} \][/tex]
2. Period:
The period of a cosine function [tex]\(\cos(bx + c)\)[/tex] is determined by the coefficient [tex]\(b\)[/tex] in front of the variable [tex]\(x\)[/tex]. The general formula for the period [tex]\(T\)[/tex] is:
[tex]\[ T = \frac{2\pi}{|b|} \][/tex]
In the given equation, the coefficient of [tex]\(x\)[/tex] is 1 (since [tex]\( \cos(x + 5) \)[/tex] can be written as [tex]\( \cos(1 \cdot x + 5) \)[/tex]). Therefore, the period [tex]\(T\)[/tex] is:
[tex]\[ T = \frac{2\pi}{1} = 2\pi \][/tex]
3. Phase Shift:
The phase shift of a cosine function [tex]\(\cos(bx + c)\)[/tex] is found by solving for the horizontal displacement. It is given by:
[tex]\[ \text{Phase Shift} = -\frac{c}{b} \][/tex]
In the given equation, [tex]\(c = 5\)[/tex] and [tex]\(b = 1\)[/tex], so the phase shift is:
[tex]\[ \text{Phase Shift} = -\frac{5}{1} = -5 \][/tex]
Since the phase shift is negative, it indicates a shift to the left by 5 units. Hence, the phase shift is "shifted to the left".
Summarizing the findings:
- Amplitude: [tex]\( \frac{1}{3} \)[/tex]
- Period: [tex]\( 2\pi \)[/tex]
- Phase Shift: [tex]\( -5 \)[/tex] (or "shifted to the left")
Therefore:
1. Amplitude: [tex]\(\frac{1}{3}\)[/tex]
2. Phase Shift: shifted to the left
1. Amplitude:
The amplitude of a cosine function [tex]\(\cos\)[/tex] is the coefficient that multiplies the function. In the given equation [tex]\( y = \frac{1}{3} \cos (x + 5) \)[/tex], the coefficient in front of the cosine function is [tex]\(\frac{1}{3}\)[/tex]. Hence, the amplitude is:
[tex]\[ \text{Amplitude} = \frac{1}{3} \][/tex]
2. Period:
The period of a cosine function [tex]\(\cos(bx + c)\)[/tex] is determined by the coefficient [tex]\(b\)[/tex] in front of the variable [tex]\(x\)[/tex]. The general formula for the period [tex]\(T\)[/tex] is:
[tex]\[ T = \frac{2\pi}{|b|} \][/tex]
In the given equation, the coefficient of [tex]\(x\)[/tex] is 1 (since [tex]\( \cos(x + 5) \)[/tex] can be written as [tex]\( \cos(1 \cdot x + 5) \)[/tex]). Therefore, the period [tex]\(T\)[/tex] is:
[tex]\[ T = \frac{2\pi}{1} = 2\pi \][/tex]
3. Phase Shift:
The phase shift of a cosine function [tex]\(\cos(bx + c)\)[/tex] is found by solving for the horizontal displacement. It is given by:
[tex]\[ \text{Phase Shift} = -\frac{c}{b} \][/tex]
In the given equation, [tex]\(c = 5\)[/tex] and [tex]\(b = 1\)[/tex], so the phase shift is:
[tex]\[ \text{Phase Shift} = -\frac{5}{1} = -5 \][/tex]
Since the phase shift is negative, it indicates a shift to the left by 5 units. Hence, the phase shift is "shifted to the left".
Summarizing the findings:
- Amplitude: [tex]\( \frac{1}{3} \)[/tex]
- Period: [tex]\( 2\pi \)[/tex]
- Phase Shift: [tex]\( -5 \)[/tex] (or "shifted to the left")
Therefore:
1. Amplitude: [tex]\(\frac{1}{3}\)[/tex]
2. Phase Shift: shifted to the left
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.