Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To analyze the trigonometric function [tex]\( y = \frac{1}{3} \cos (x + 5) \)[/tex], we need to determine three specific characteristics: the amplitude, the period, and the phase shift of the function. Let's break down each component:
1. Amplitude:
The amplitude of a cosine function [tex]\(\cos\)[/tex] is the coefficient that multiplies the function. In the given equation [tex]\( y = \frac{1}{3} \cos (x + 5) \)[/tex], the coefficient in front of the cosine function is [tex]\(\frac{1}{3}\)[/tex]. Hence, the amplitude is:
[tex]\[ \text{Amplitude} = \frac{1}{3} \][/tex]
2. Period:
The period of a cosine function [tex]\(\cos(bx + c)\)[/tex] is determined by the coefficient [tex]\(b\)[/tex] in front of the variable [tex]\(x\)[/tex]. The general formula for the period [tex]\(T\)[/tex] is:
[tex]\[ T = \frac{2\pi}{|b|} \][/tex]
In the given equation, the coefficient of [tex]\(x\)[/tex] is 1 (since [tex]\( \cos(x + 5) \)[/tex] can be written as [tex]\( \cos(1 \cdot x + 5) \)[/tex]). Therefore, the period [tex]\(T\)[/tex] is:
[tex]\[ T = \frac{2\pi}{1} = 2\pi \][/tex]
3. Phase Shift:
The phase shift of a cosine function [tex]\(\cos(bx + c)\)[/tex] is found by solving for the horizontal displacement. It is given by:
[tex]\[ \text{Phase Shift} = -\frac{c}{b} \][/tex]
In the given equation, [tex]\(c = 5\)[/tex] and [tex]\(b = 1\)[/tex], so the phase shift is:
[tex]\[ \text{Phase Shift} = -\frac{5}{1} = -5 \][/tex]
Since the phase shift is negative, it indicates a shift to the left by 5 units. Hence, the phase shift is "shifted to the left".
Summarizing the findings:
- Amplitude: [tex]\( \frac{1}{3} \)[/tex]
- Period: [tex]\( 2\pi \)[/tex]
- Phase Shift: [tex]\( -5 \)[/tex] (or "shifted to the left")
Therefore:
1. Amplitude: [tex]\(\frac{1}{3}\)[/tex]
2. Phase Shift: shifted to the left
1. Amplitude:
The amplitude of a cosine function [tex]\(\cos\)[/tex] is the coefficient that multiplies the function. In the given equation [tex]\( y = \frac{1}{3} \cos (x + 5) \)[/tex], the coefficient in front of the cosine function is [tex]\(\frac{1}{3}\)[/tex]. Hence, the amplitude is:
[tex]\[ \text{Amplitude} = \frac{1}{3} \][/tex]
2. Period:
The period of a cosine function [tex]\(\cos(bx + c)\)[/tex] is determined by the coefficient [tex]\(b\)[/tex] in front of the variable [tex]\(x\)[/tex]. The general formula for the period [tex]\(T\)[/tex] is:
[tex]\[ T = \frac{2\pi}{|b|} \][/tex]
In the given equation, the coefficient of [tex]\(x\)[/tex] is 1 (since [tex]\( \cos(x + 5) \)[/tex] can be written as [tex]\( \cos(1 \cdot x + 5) \)[/tex]). Therefore, the period [tex]\(T\)[/tex] is:
[tex]\[ T = \frac{2\pi}{1} = 2\pi \][/tex]
3. Phase Shift:
The phase shift of a cosine function [tex]\(\cos(bx + c)\)[/tex] is found by solving for the horizontal displacement. It is given by:
[tex]\[ \text{Phase Shift} = -\frac{c}{b} \][/tex]
In the given equation, [tex]\(c = 5\)[/tex] and [tex]\(b = 1\)[/tex], so the phase shift is:
[tex]\[ \text{Phase Shift} = -\frac{5}{1} = -5 \][/tex]
Since the phase shift is negative, it indicates a shift to the left by 5 units. Hence, the phase shift is "shifted to the left".
Summarizing the findings:
- Amplitude: [tex]\( \frac{1}{3} \)[/tex]
- Period: [tex]\( 2\pi \)[/tex]
- Phase Shift: [tex]\( -5 \)[/tex] (or "shifted to the left")
Therefore:
1. Amplitude: [tex]\(\frac{1}{3}\)[/tex]
2. Phase Shift: shifted to the left
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.