Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the equation that describes a parabola that opens left or right and whose vertex is at the point [tex]\((h, v)\)[/tex], let’s analyze each option provided.
First, recall the general forms of parabolas:
- For a parabola that opens up or down, the general form is:
[tex]\[ y = a(x - h)^2 + k \][/tex]
where [tex]\((h, k)\)[/tex] represents the vertex.
- For a parabola that opens left or right, the general form is:
[tex]\[ x = a(y - k)^2 + h \][/tex]
where [tex]\((h, k)\)[/tex] represents the vertex.
Given this, the parabola that opens left or right fits the second form. The vertex given in the question is [tex]\((h, v)\)[/tex]. Thus, substituting [tex]\(h\)[/tex] and [tex]\(v\)[/tex] into the standard form [tex]\(x = a(y - k)^2 + h\)[/tex], we need to check which choice matches this form.
Let’s go through each option:
A. [tex]\(x = a(y - h)^2 + v\)[/tex]
- Here, [tex]\(h\)[/tex] is subtracted from [tex]\(y\)[/tex], making the vertex component incorrect compared to the standard form [tex]\(x = a(y - v)^2 + h\)[/tex].
B. [tex]\(x = a(y - y)^2 + h\)[/tex]
- This expression simplifies to [tex]\(x = h\)[/tex], which does not represent a parabola at all.
C. [tex]\(y = a(x - h)^2 + h\)[/tex]
- This equation is in the form of a parabola that opens up or down, which does not match the requirement.
D. [tex]\(y = a(x - h)^2 + v\)[/tex]
- This equation also describes a parabola that opens up or down, which is incorrect for our conditions.
Thus, the correct answer must be:
A. [tex]\(x = a(y - h)^2 + v\)[/tex]
First, recall the general forms of parabolas:
- For a parabola that opens up or down, the general form is:
[tex]\[ y = a(x - h)^2 + k \][/tex]
where [tex]\((h, k)\)[/tex] represents the vertex.
- For a parabola that opens left or right, the general form is:
[tex]\[ x = a(y - k)^2 + h \][/tex]
where [tex]\((h, k)\)[/tex] represents the vertex.
Given this, the parabola that opens left or right fits the second form. The vertex given in the question is [tex]\((h, v)\)[/tex]. Thus, substituting [tex]\(h\)[/tex] and [tex]\(v\)[/tex] into the standard form [tex]\(x = a(y - k)^2 + h\)[/tex], we need to check which choice matches this form.
Let’s go through each option:
A. [tex]\(x = a(y - h)^2 + v\)[/tex]
- Here, [tex]\(h\)[/tex] is subtracted from [tex]\(y\)[/tex], making the vertex component incorrect compared to the standard form [tex]\(x = a(y - v)^2 + h\)[/tex].
B. [tex]\(x = a(y - y)^2 + h\)[/tex]
- This expression simplifies to [tex]\(x = h\)[/tex], which does not represent a parabola at all.
C. [tex]\(y = a(x - h)^2 + h\)[/tex]
- This equation is in the form of a parabola that opens up or down, which does not match the requirement.
D. [tex]\(y = a(x - h)^2 + v\)[/tex]
- This equation also describes a parabola that opens up or down, which is incorrect for our conditions.
Thus, the correct answer must be:
A. [tex]\(x = a(y - h)^2 + v\)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.