Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To factor the function [tex]\( f(x) = x^2 + 11x + 30 \)[/tex] and convert it to intercept form, follow these steps:
1. Identify the polynomial: We are given [tex]\( f(x) = x^2 + 11x + 30 \)[/tex].
2. Look for factor pairs of the constant term: In this polynomial, the constant term is 30. We need to find two numbers that multiply to 30 and add up to the coefficient of the [tex]\( x \)[/tex] term, which is 11.
3. Find the correct pair:
- The pairs of factors of 30 are:
[tex]\[ (1, 30), (2, 15), (3, 10), (5, 6) \][/tex]
- We seek pairs that add up to 11. The pair (5, 6) satisfies this condition because [tex]\( 5 + 6 = 11 \)[/tex].
4. Rewrite the middle term using the factor pair:
[tex]\[ x^2 + 11x + 30 = x^2 + 5x + 6x + 30 \][/tex]
5. Group the terms:
[tex]\[ x^2 + 5x + 6x + 30 = (x^2 + 5x) + (6x + 30) \][/tex]
6. Factor by grouping:
[tex]\[ (x^2 + 5x) + (6x + 30) = x(x + 5) + 6(x + 5) \][/tex]
7. Factor out the common binomial:
[tex]\[ x(x + 5) + 6(x + 5) = (x + 5)(x + 6) \][/tex]
So, the function [tex]\( f(x) \)[/tex] factored in intercept form is:
[tex]\[ f(x) = (x + 5)(x + 6) \][/tex]
1. Identify the polynomial: We are given [tex]\( f(x) = x^2 + 11x + 30 \)[/tex].
2. Look for factor pairs of the constant term: In this polynomial, the constant term is 30. We need to find two numbers that multiply to 30 and add up to the coefficient of the [tex]\( x \)[/tex] term, which is 11.
3. Find the correct pair:
- The pairs of factors of 30 are:
[tex]\[ (1, 30), (2, 15), (3, 10), (5, 6) \][/tex]
- We seek pairs that add up to 11. The pair (5, 6) satisfies this condition because [tex]\( 5 + 6 = 11 \)[/tex].
4. Rewrite the middle term using the factor pair:
[tex]\[ x^2 + 11x + 30 = x^2 + 5x + 6x + 30 \][/tex]
5. Group the terms:
[tex]\[ x^2 + 5x + 6x + 30 = (x^2 + 5x) + (6x + 30) \][/tex]
6. Factor by grouping:
[tex]\[ (x^2 + 5x) + (6x + 30) = x(x + 5) + 6(x + 5) \][/tex]
7. Factor out the common binomial:
[tex]\[ x(x + 5) + 6(x + 5) = (x + 5)(x + 6) \][/tex]
So, the function [tex]\( f(x) \)[/tex] factored in intercept form is:
[tex]\[ f(x) = (x + 5)(x + 6) \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.