Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the quadratic equation [tex]\(x^2 + 2 = 20\)[/tex], follow these steps:
1. Rewrite the equation in standard form:
[tex]\[ x^2 + 2 = 20 \][/tex]
Subtract 20 from both sides to get:
[tex]\[ x^2 + 2 - 20 = 0 \][/tex]
Simplifying this, we have:
[tex]\[ x^2 - 18 = 0 \][/tex]
2. Factor the quadratic expression:
Notice that the equation can be written as a difference of squares. The difference of squares formula is [tex]\(a^2 - b^2 = (a + b)(a - b)\)[/tex].
In this case, [tex]\(a = x\)[/tex] and [tex]\(b = \sqrt{18}\)[/tex] which simplifies to [tex]\(3\sqrt{2}\)[/tex]. Therefore:
[tex]\[ x^2 - (3\sqrt{2})^2 = 0 \implies (x - 3\sqrt{2})(x + 3\sqrt{2}) = 0 \][/tex]
3. Set each factor equal to zero:
Now, solve for [tex]\(x\)[/tex] by setting each factor equal to zero:
[tex]\[ x - 3\sqrt{2} = 0 \implies x = 3\sqrt{2} \][/tex]
[tex]\[ x + 3\sqrt{2} = 0 \implies x = -3\sqrt{2} \][/tex]
4. Write the solutions:
The solutions to the equation are:
[tex]\[ x = 3\sqrt{2} \][/tex]
[tex]\[ x = -3\sqrt{2} \][/tex]
Therefore, the solutions to the equation [tex]\(x^2 + 2 = 20\)[/tex] are [tex]\(x = 3\sqrt{2}\)[/tex] and [tex]\(x = -3\sqrt{2}\)[/tex].
1. Rewrite the equation in standard form:
[tex]\[ x^2 + 2 = 20 \][/tex]
Subtract 20 from both sides to get:
[tex]\[ x^2 + 2 - 20 = 0 \][/tex]
Simplifying this, we have:
[tex]\[ x^2 - 18 = 0 \][/tex]
2. Factor the quadratic expression:
Notice that the equation can be written as a difference of squares. The difference of squares formula is [tex]\(a^2 - b^2 = (a + b)(a - b)\)[/tex].
In this case, [tex]\(a = x\)[/tex] and [tex]\(b = \sqrt{18}\)[/tex] which simplifies to [tex]\(3\sqrt{2}\)[/tex]. Therefore:
[tex]\[ x^2 - (3\sqrt{2})^2 = 0 \implies (x - 3\sqrt{2})(x + 3\sqrt{2}) = 0 \][/tex]
3. Set each factor equal to zero:
Now, solve for [tex]\(x\)[/tex] by setting each factor equal to zero:
[tex]\[ x - 3\sqrt{2} = 0 \implies x = 3\sqrt{2} \][/tex]
[tex]\[ x + 3\sqrt{2} = 0 \implies x = -3\sqrt{2} \][/tex]
4. Write the solutions:
The solutions to the equation are:
[tex]\[ x = 3\sqrt{2} \][/tex]
[tex]\[ x = -3\sqrt{2} \][/tex]
Therefore, the solutions to the equation [tex]\(x^2 + 2 = 20\)[/tex] are [tex]\(x = 3\sqrt{2}\)[/tex] and [tex]\(x = -3\sqrt{2}\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.