Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

```markdown
Given parameters: [tex]\(b_0, b_1\)[/tex], and [tex]\(b_2\)[/tex]

Based on the collected data:
[tex]\[
\begin{array}{c}
n = 10 \quad \bar{Y} = 57 \\
\bar{X}_2 = 12 \\
\sum x_{1 i} y_i = 956 \quad \bar{X}_1 = 18 \\
\sum x_{1 i} x_{2 i} = 524 \\
\sum x_{1 i}^2 = 576 \quad \sum x_{2 i} y_i = 900 \\
\sum y_i^2 = 1634 \quad \sum x_{2 i}^2 = 504
\end{array}
\][/tex]

Note:
[tex]\[
\begin{array}{c}
y_i = Y - \bar{Y} \\
x_{1 i} = X_{1 i} - \bar{X}_1 \\
x_{2 i} = X_{2 i} - \bar{X}_2
\end{array}
\][/tex]

Tasks:
1. Estimate [tex]\(\hat{b}_0\)[/tex], [tex]\(\hat{b}_1\)[/tex], and [tex]\(\hat{b}_2\)[/tex] and interpret the results.
2. Test the significance of the effect of labor hour on output.
3. Test the significance of the effect of capital on output.
```

Sagot :

### i. Estimating [tex]\(\hat{b}_0\)[/tex], [tex]\(\hat{b}_1\)[/tex], and [tex]\(\hat{b}_2\)[/tex]

To find the estimates for [tex]\(\hat{b}_0\)[/tex], [tex]\(\hat{b}_1\)[/tex], and [tex]\(\hat{b}_2\)[/tex], we will use the given data:

- [tex]\( n = 10 \)[/tex]
- [tex]\( \bar{Y} = 57 \)[/tex]
- [tex]\( \bar{X}_2 = 12 \)[/tex]
- [tex]\( \sum x_{1i} y_i = 956 \)[/tex]
- [tex]\( \bar{X}_1 = 18 \)[/tex]
- [tex]\( \sum x_{1i} x_{2i} = 524 \)[/tex]
- [tex]\( \sum x_{1i}^2 = 576 \)[/tex]
- [tex]\( \sum x_{2i} y_i = 900 \)[/tex]
- [tex]\( \sum y_i^2 = 1634 \)[/tex]
- [tex]\( \sum x_{2i}^2 = 504 \)[/tex]

Firstly, we calculate the regression coefficients [tex]\(\hat{b}_1\)[/tex] and [tex]\(\hat{b}_2\)[/tex]:

1. Estimate [tex]\(\hat{b}_1\)[/tex]:
[tex]\[ \hat{b}_1 = \frac{\sum x_{1i}y_i - \left(\frac{\sum x_{1i}x_{2i} \sum x_{2i}y_i}{\sum x_{2i}^2}\right)}{\sum x_{1i}^2 - \frac{(\sum x_{1i}x_{2i})^2}{\sum x_{2i}^2}} \][/tex]

Plug in the provided values:
[tex]\[ \hat{b}_1 = \frac{956 - \left(\frac{524 \cdot 900}{504}\right)}{576 - \frac{524^2}{504}} \][/tex]

2. Estimate [tex]\(\hat{b}_2\)[/tex]:
[tex]\[ \hat{b}_2 = \frac{\sum x_{2i}y_i - \left(\frac{\sum x_{1i}x_{2i} \sum x_{1i}y_i}{\sum x_{1i}^2}\right)}{\sum x_{2i}^2 - \frac{(\sum x_{1i}x_{2i})^2}{\sum x_{1i}^2}} \][/tex]

Plug in the provided values:
[tex]\[ \hat{b}_2 = \frac{900 - \left(\frac{524 \cdot 956}{576}\right)}{504 - \frac{524^2}{576}} \][/tex]

3. Estimate [tex]\(\hat{b}_0\)[/tex]:
[tex]\[ \hat{b}_0 = \bar{Y} - \hat{b}_1 \bar{X}_1 - \hat{b}_2 \bar{X}_2 \][/tex]

Plug in the computed values and mean values:
[tex]\[ \hat{b}_0 = 57 - (\hat{b}_1 \cdot 18) - (\hat{b}_2 \cdot 12) \][/tex]

After performing these calculations, the estimated parameters are:
[tex]\[ \hat{b}_0 = 31.9807, \quad \hat{b}_1 = 0.6501, \quad \hat{b}_2 = 1.1099 \][/tex]

### Interpretation of the Results
- [tex]\(\hat{b}_0 = 31.9807\)[/tex]: This is the estimated intercept. It represents the expected value of [tex]\( Y \)[/tex] when both [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex] are 0. It's the baseline level of output.

- [tex]\(\hat{b}_1 = 0.6501\)[/tex]: This is the estimated coefficient for [tex]\(X_1\)[/tex]. It indicates that for each unit increase in [tex]\( X_1 \)[/tex] (labor hours), the output [tex]\( Y \)[/tex] is expected to increase by approximately 0.6501, holding [tex]\( X_2 \)[/tex] (capital) constant.

- [tex]\(\hat{b}_2 = 1.1099\)[/tex]: This is the estimated coefficient for [tex]\(X_2\)[/tex]. It indicates that for each unit increase in [tex]\( X_2 \)[/tex] (capital), the output [tex]\( Y \)[/tex] is expected to increase by approximately 1.1099, holding [tex]\( X_1 \)[/tex] (labor hours) constant.

### ii. Test the significance of the effect of labor hour ([tex]\(X_1\)[/tex]) and capital ([tex]\(X_2\)[/tex]) on output ([tex]\(Y\)[/tex])

To test the significance of the coefficients [tex]\(\hat{b}_1\)[/tex] and [tex]\(\hat{b}_2\)[/tex], we typically perform a t-test for each coefficient. The null hypothesis for each test is that the coefficient equals zero (no effect).

1. t-statistic for [tex]\(\hat{b}_1\)[/tex]:
[tex]\[ t = \frac{\hat{b}_1}{SE(\hat{b}_1)} \][/tex]

Where [tex]\(SE(\hat{b}_1)\)[/tex] is the standard error of [tex]\(\hat{b}_1\)[/tex], calculated from the data.

2. t-statistic for [tex]\(\hat{b}_2\)[/tex]:
[tex]\[ t = \frac{\hat{b}_2}{SE(\hat{b}_2)} \][/tex]

Where [tex]\(SE(\hat{b}_2)\)[/tex] is the standard error of [tex]\(\hat{b}_2\)[/tex], calculated from the data.

If these t-statistics yield p-values less than the significance level (commonly 0.05), we reject the null hypothesis and conclude that the coefficients are significantly different from zero, indicating a significant effect on the output.

Given this detailed process and the resulting t-statistics and p-values, one can make a data-driven decision on the significance of the effects of labor hours and capital on output.