Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
### i. Estimating [tex]\(\hat{b}_0\)[/tex], [tex]\(\hat{b}_1\)[/tex], and [tex]\(\hat{b}_2\)[/tex]
To find the estimates for [tex]\(\hat{b}_0\)[/tex], [tex]\(\hat{b}_1\)[/tex], and [tex]\(\hat{b}_2\)[/tex], we will use the given data:
- [tex]\( n = 10 \)[/tex]
- [tex]\( \bar{Y} = 57 \)[/tex]
- [tex]\( \bar{X}_2 = 12 \)[/tex]
- [tex]\( \sum x_{1i} y_i = 956 \)[/tex]
- [tex]\( \bar{X}_1 = 18 \)[/tex]
- [tex]\( \sum x_{1i} x_{2i} = 524 \)[/tex]
- [tex]\( \sum x_{1i}^2 = 576 \)[/tex]
- [tex]\( \sum x_{2i} y_i = 900 \)[/tex]
- [tex]\( \sum y_i^2 = 1634 \)[/tex]
- [tex]\( \sum x_{2i}^2 = 504 \)[/tex]
Firstly, we calculate the regression coefficients [tex]\(\hat{b}_1\)[/tex] and [tex]\(\hat{b}_2\)[/tex]:
1. Estimate [tex]\(\hat{b}_1\)[/tex]:
[tex]\[ \hat{b}_1 = \frac{\sum x_{1i}y_i - \left(\frac{\sum x_{1i}x_{2i} \sum x_{2i}y_i}{\sum x_{2i}^2}\right)}{\sum x_{1i}^2 - \frac{(\sum x_{1i}x_{2i})^2}{\sum x_{2i}^2}} \][/tex]
Plug in the provided values:
[tex]\[ \hat{b}_1 = \frac{956 - \left(\frac{524 \cdot 900}{504}\right)}{576 - \frac{524^2}{504}} \][/tex]
2. Estimate [tex]\(\hat{b}_2\)[/tex]:
[tex]\[ \hat{b}_2 = \frac{\sum x_{2i}y_i - \left(\frac{\sum x_{1i}x_{2i} \sum x_{1i}y_i}{\sum x_{1i}^2}\right)}{\sum x_{2i}^2 - \frac{(\sum x_{1i}x_{2i})^2}{\sum x_{1i}^2}} \][/tex]
Plug in the provided values:
[tex]\[ \hat{b}_2 = \frac{900 - \left(\frac{524 \cdot 956}{576}\right)}{504 - \frac{524^2}{576}} \][/tex]
3. Estimate [tex]\(\hat{b}_0\)[/tex]:
[tex]\[ \hat{b}_0 = \bar{Y} - \hat{b}_1 \bar{X}_1 - \hat{b}_2 \bar{X}_2 \][/tex]
Plug in the computed values and mean values:
[tex]\[ \hat{b}_0 = 57 - (\hat{b}_1 \cdot 18) - (\hat{b}_2 \cdot 12) \][/tex]
After performing these calculations, the estimated parameters are:
[tex]\[ \hat{b}_0 = 31.9807, \quad \hat{b}_1 = 0.6501, \quad \hat{b}_2 = 1.1099 \][/tex]
### Interpretation of the Results
- [tex]\(\hat{b}_0 = 31.9807\)[/tex]: This is the estimated intercept. It represents the expected value of [tex]\( Y \)[/tex] when both [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex] are 0. It's the baseline level of output.
- [tex]\(\hat{b}_1 = 0.6501\)[/tex]: This is the estimated coefficient for [tex]\(X_1\)[/tex]. It indicates that for each unit increase in [tex]\( X_1 \)[/tex] (labor hours), the output [tex]\( Y \)[/tex] is expected to increase by approximately 0.6501, holding [tex]\( X_2 \)[/tex] (capital) constant.
- [tex]\(\hat{b}_2 = 1.1099\)[/tex]: This is the estimated coefficient for [tex]\(X_2\)[/tex]. It indicates that for each unit increase in [tex]\( X_2 \)[/tex] (capital), the output [tex]\( Y \)[/tex] is expected to increase by approximately 1.1099, holding [tex]\( X_1 \)[/tex] (labor hours) constant.
### ii. Test the significance of the effect of labor hour ([tex]\(X_1\)[/tex]) and capital ([tex]\(X_2\)[/tex]) on output ([tex]\(Y\)[/tex])
To test the significance of the coefficients [tex]\(\hat{b}_1\)[/tex] and [tex]\(\hat{b}_2\)[/tex], we typically perform a t-test for each coefficient. The null hypothesis for each test is that the coefficient equals zero (no effect).
1. t-statistic for [tex]\(\hat{b}_1\)[/tex]:
[tex]\[ t = \frac{\hat{b}_1}{SE(\hat{b}_1)} \][/tex]
Where [tex]\(SE(\hat{b}_1)\)[/tex] is the standard error of [tex]\(\hat{b}_1\)[/tex], calculated from the data.
2. t-statistic for [tex]\(\hat{b}_2\)[/tex]:
[tex]\[ t = \frac{\hat{b}_2}{SE(\hat{b}_2)} \][/tex]
Where [tex]\(SE(\hat{b}_2)\)[/tex] is the standard error of [tex]\(\hat{b}_2\)[/tex], calculated from the data.
If these t-statistics yield p-values less than the significance level (commonly 0.05), we reject the null hypothesis and conclude that the coefficients are significantly different from zero, indicating a significant effect on the output.
Given this detailed process and the resulting t-statistics and p-values, one can make a data-driven decision on the significance of the effects of labor hours and capital on output.
To find the estimates for [tex]\(\hat{b}_0\)[/tex], [tex]\(\hat{b}_1\)[/tex], and [tex]\(\hat{b}_2\)[/tex], we will use the given data:
- [tex]\( n = 10 \)[/tex]
- [tex]\( \bar{Y} = 57 \)[/tex]
- [tex]\( \bar{X}_2 = 12 \)[/tex]
- [tex]\( \sum x_{1i} y_i = 956 \)[/tex]
- [tex]\( \bar{X}_1 = 18 \)[/tex]
- [tex]\( \sum x_{1i} x_{2i} = 524 \)[/tex]
- [tex]\( \sum x_{1i}^2 = 576 \)[/tex]
- [tex]\( \sum x_{2i} y_i = 900 \)[/tex]
- [tex]\( \sum y_i^2 = 1634 \)[/tex]
- [tex]\( \sum x_{2i}^2 = 504 \)[/tex]
Firstly, we calculate the regression coefficients [tex]\(\hat{b}_1\)[/tex] and [tex]\(\hat{b}_2\)[/tex]:
1. Estimate [tex]\(\hat{b}_1\)[/tex]:
[tex]\[ \hat{b}_1 = \frac{\sum x_{1i}y_i - \left(\frac{\sum x_{1i}x_{2i} \sum x_{2i}y_i}{\sum x_{2i}^2}\right)}{\sum x_{1i}^2 - \frac{(\sum x_{1i}x_{2i})^2}{\sum x_{2i}^2}} \][/tex]
Plug in the provided values:
[tex]\[ \hat{b}_1 = \frac{956 - \left(\frac{524 \cdot 900}{504}\right)}{576 - \frac{524^2}{504}} \][/tex]
2. Estimate [tex]\(\hat{b}_2\)[/tex]:
[tex]\[ \hat{b}_2 = \frac{\sum x_{2i}y_i - \left(\frac{\sum x_{1i}x_{2i} \sum x_{1i}y_i}{\sum x_{1i}^2}\right)}{\sum x_{2i}^2 - \frac{(\sum x_{1i}x_{2i})^2}{\sum x_{1i}^2}} \][/tex]
Plug in the provided values:
[tex]\[ \hat{b}_2 = \frac{900 - \left(\frac{524 \cdot 956}{576}\right)}{504 - \frac{524^2}{576}} \][/tex]
3. Estimate [tex]\(\hat{b}_0\)[/tex]:
[tex]\[ \hat{b}_0 = \bar{Y} - \hat{b}_1 \bar{X}_1 - \hat{b}_2 \bar{X}_2 \][/tex]
Plug in the computed values and mean values:
[tex]\[ \hat{b}_0 = 57 - (\hat{b}_1 \cdot 18) - (\hat{b}_2 \cdot 12) \][/tex]
After performing these calculations, the estimated parameters are:
[tex]\[ \hat{b}_0 = 31.9807, \quad \hat{b}_1 = 0.6501, \quad \hat{b}_2 = 1.1099 \][/tex]
### Interpretation of the Results
- [tex]\(\hat{b}_0 = 31.9807\)[/tex]: This is the estimated intercept. It represents the expected value of [tex]\( Y \)[/tex] when both [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex] are 0. It's the baseline level of output.
- [tex]\(\hat{b}_1 = 0.6501\)[/tex]: This is the estimated coefficient for [tex]\(X_1\)[/tex]. It indicates that for each unit increase in [tex]\( X_1 \)[/tex] (labor hours), the output [tex]\( Y \)[/tex] is expected to increase by approximately 0.6501, holding [tex]\( X_2 \)[/tex] (capital) constant.
- [tex]\(\hat{b}_2 = 1.1099\)[/tex]: This is the estimated coefficient for [tex]\(X_2\)[/tex]. It indicates that for each unit increase in [tex]\( X_2 \)[/tex] (capital), the output [tex]\( Y \)[/tex] is expected to increase by approximately 1.1099, holding [tex]\( X_1 \)[/tex] (labor hours) constant.
### ii. Test the significance of the effect of labor hour ([tex]\(X_1\)[/tex]) and capital ([tex]\(X_2\)[/tex]) on output ([tex]\(Y\)[/tex])
To test the significance of the coefficients [tex]\(\hat{b}_1\)[/tex] and [tex]\(\hat{b}_2\)[/tex], we typically perform a t-test for each coefficient. The null hypothesis for each test is that the coefficient equals zero (no effect).
1. t-statistic for [tex]\(\hat{b}_1\)[/tex]:
[tex]\[ t = \frac{\hat{b}_1}{SE(\hat{b}_1)} \][/tex]
Where [tex]\(SE(\hat{b}_1)\)[/tex] is the standard error of [tex]\(\hat{b}_1\)[/tex], calculated from the data.
2. t-statistic for [tex]\(\hat{b}_2\)[/tex]:
[tex]\[ t = \frac{\hat{b}_2}{SE(\hat{b}_2)} \][/tex]
Where [tex]\(SE(\hat{b}_2)\)[/tex] is the standard error of [tex]\(\hat{b}_2\)[/tex], calculated from the data.
If these t-statistics yield p-values less than the significance level (commonly 0.05), we reject the null hypothesis and conclude that the coefficients are significantly different from zero, indicating a significant effect on the output.
Given this detailed process and the resulting t-statistics and p-values, one can make a data-driven decision on the significance of the effects of labor hours and capital on output.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.