Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the values of [tex]\( x \)[/tex] that are the roots of the quadratic equation [tex]\( x^2 + 3x - 3 = 0 \)[/tex], we will follow these steps using the quadratic formula. The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
In our equation [tex]\( x^2 + 3x - 3 = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \, b = 3, \, c = -3 \][/tex]
1. Calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = 3^2 - 4 \cdot 1 \cdot (-3) = 9 + 12 = 21 \][/tex]
2. Calculate the roots using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{\text{Discriminant}}}{2a} = \frac{-3 \pm \sqrt{21}}{2} \][/tex]
This yields two roots:
[tex]\[ x_1 = \frac{-3 + \sqrt{21}}{2} \quad \text{and} \quad x_2 = \frac{-3 - \sqrt{21}}{2} \][/tex]
However, from the result given:
[tex]\[ (0.7912878474779199, -3.79128784747792) \][/tex]
we know that these numeric values correspond to approximately:
[tex]\[ 0.791 \quad \text{and} \quad -3.791 \][/tex]
These values need to be compared with the given choices:
- Choice A: [tex]\(\frac{-3+\sqrt{3}}{2} \approx \text{value is not matching}\)[/tex]
- Choice B: [tex]\(\frac{-3-\sqrt{3}}{2} \approx \text{value is not matching}\)[/tex]
- Choice C: [tex]\(\frac{-3-\sqrt{2i}}{2}\)[/tex] involves imaginary number.
- Choice D: [tex]\(\frac{3+\sqrt{21}}{2}\)[/tex].
Given the exact roots were used to ensure there are no errors, we find that the roots are:
Roots Comparison:
- Numerical root [tex]\(\approx 0.79\)[/tex] aligns with [tex]\( \frac{-3+\sqrt{21}}{2} \)[/tex].
- Numerical root [tex]\(\approx -3.79\)[/tex] aligns with [tex]\( \frac{-3-\sqrt{21}}{2} \)[/tex].
Thus, the correct choices are [tex]\((\frac{-3+\sqrt{21}}{2})\)[/tex] and [tex]\((\frac{-3-\sqrt{21}}{2})\)[/tex].
### Conclusion
Given the numeric comparison, the correct choices are neither mentioned in the problem sets. Choices like A, B, C, D should be re-evaluated and corrected as the given numerical values align with roots having denominator difference.
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
In our equation [tex]\( x^2 + 3x - 3 = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \, b = 3, \, c = -3 \][/tex]
1. Calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = 3^2 - 4 \cdot 1 \cdot (-3) = 9 + 12 = 21 \][/tex]
2. Calculate the roots using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{\text{Discriminant}}}{2a} = \frac{-3 \pm \sqrt{21}}{2} \][/tex]
This yields two roots:
[tex]\[ x_1 = \frac{-3 + \sqrt{21}}{2} \quad \text{and} \quad x_2 = \frac{-3 - \sqrt{21}}{2} \][/tex]
However, from the result given:
[tex]\[ (0.7912878474779199, -3.79128784747792) \][/tex]
we know that these numeric values correspond to approximately:
[tex]\[ 0.791 \quad \text{and} \quad -3.791 \][/tex]
These values need to be compared with the given choices:
- Choice A: [tex]\(\frac{-3+\sqrt{3}}{2} \approx \text{value is not matching}\)[/tex]
- Choice B: [tex]\(\frac{-3-\sqrt{3}}{2} \approx \text{value is not matching}\)[/tex]
- Choice C: [tex]\(\frac{-3-\sqrt{2i}}{2}\)[/tex] involves imaginary number.
- Choice D: [tex]\(\frac{3+\sqrt{21}}{2}\)[/tex].
Given the exact roots were used to ensure there are no errors, we find that the roots are:
Roots Comparison:
- Numerical root [tex]\(\approx 0.79\)[/tex] aligns with [tex]\( \frac{-3+\sqrt{21}}{2} \)[/tex].
- Numerical root [tex]\(\approx -3.79\)[/tex] aligns with [tex]\( \frac{-3-\sqrt{21}}{2} \)[/tex].
Thus, the correct choices are [tex]\((\frac{-3+\sqrt{21}}{2})\)[/tex] and [tex]\((\frac{-3-\sqrt{21}}{2})\)[/tex].
### Conclusion
Given the numeric comparison, the correct choices are neither mentioned in the problem sets. Choices like A, B, C, D should be re-evaluated and corrected as the given numerical values align with roots having denominator difference.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.