Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! To determine the standard deviation of the sampling distribution for the difference in sample means ([tex]\(\bar{x}_A - \bar{x}_C\)[/tex]), we can follow these steps:
1. Identify the given parameters:
- Mean and standard deviation for Alex (Group A):
[tex]\[\mu_A = 5.28\][/tex]
[tex]\[\sigma_A = 0.38\][/tex]
- Sample size for Alex:
[tex]\[n_A = 10\][/tex]
- Mean and standard deviation for Chris (Group C):
[tex]\[\mu_C = 5.45\][/tex]
[tex]\[\sigma_C = 0.2\][/tex]
- Sample size for Chris:
[tex]\[n_C = 15\][/tex]
2. Recall the formula for the standard deviation of the difference in sample means ([tex]\(\sigma_{\bar{x}_A - \bar{x}_C}\)[/tex]):
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{\left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right)} \][/tex]
3. Substitute the given values into the formula:
- Variance for Alex:
[tex]\[ \sigma_A^2 = (0.38)^2 = 0.1444 \][/tex]
- Variance for Chris:
[tex]\[ \sigma_C^2 = (0.2)^2 = 0.04 \][/tex]
- Calculation for Alex’s contribution to the standard deviation:
[tex]\[ \frac{\sigma_A^2}{n_A} = \frac{0.1444}{10} = 0.01444 \][/tex]
- Calculation for Chris’s contribution to the standard deviation:
[tex]\[ \frac{\sigma_C^2}{n_C} = \frac{0.04}{15} = 0.0026667 \][/tex]
4. Sum the contributions:
[tex]\[ \left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right) = 0.01444 + 0.0026667 = 0.0171067 \][/tex]
5. Take the square root to find the standard deviation:
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{0.0171067} \approx 0.13 \][/tex]
So, the standard deviation of the sampling distribution for [tex]\(\bar{x}_A - \bar{x}_C\)[/tex] is approximately [tex]\(0.13\)[/tex].
Hence, the correct answer is [tex]\(0.13\)[/tex].
1. Identify the given parameters:
- Mean and standard deviation for Alex (Group A):
[tex]\[\mu_A = 5.28\][/tex]
[tex]\[\sigma_A = 0.38\][/tex]
- Sample size for Alex:
[tex]\[n_A = 10\][/tex]
- Mean and standard deviation for Chris (Group C):
[tex]\[\mu_C = 5.45\][/tex]
[tex]\[\sigma_C = 0.2\][/tex]
- Sample size for Chris:
[tex]\[n_C = 15\][/tex]
2. Recall the formula for the standard deviation of the difference in sample means ([tex]\(\sigma_{\bar{x}_A - \bar{x}_C}\)[/tex]):
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{\left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right)} \][/tex]
3. Substitute the given values into the formula:
- Variance for Alex:
[tex]\[ \sigma_A^2 = (0.38)^2 = 0.1444 \][/tex]
- Variance for Chris:
[tex]\[ \sigma_C^2 = (0.2)^2 = 0.04 \][/tex]
- Calculation for Alex’s contribution to the standard deviation:
[tex]\[ \frac{\sigma_A^2}{n_A} = \frac{0.1444}{10} = 0.01444 \][/tex]
- Calculation for Chris’s contribution to the standard deviation:
[tex]\[ \frac{\sigma_C^2}{n_C} = \frac{0.04}{15} = 0.0026667 \][/tex]
4. Sum the contributions:
[tex]\[ \left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right) = 0.01444 + 0.0026667 = 0.0171067 \][/tex]
5. Take the square root to find the standard deviation:
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{0.0171067} \approx 0.13 \][/tex]
So, the standard deviation of the sampling distribution for [tex]\(\bar{x}_A - \bar{x}_C\)[/tex] is approximately [tex]\(0.13\)[/tex].
Hence, the correct answer is [tex]\(0.13\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.