Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! To determine the standard deviation of the sampling distribution for the difference in sample means ([tex]\(\bar{x}_A - \bar{x}_C\)[/tex]), we can follow these steps:
1. Identify the given parameters:
- Mean and standard deviation for Alex (Group A):
[tex]\[\mu_A = 5.28\][/tex]
[tex]\[\sigma_A = 0.38\][/tex]
- Sample size for Alex:
[tex]\[n_A = 10\][/tex]
- Mean and standard deviation for Chris (Group C):
[tex]\[\mu_C = 5.45\][/tex]
[tex]\[\sigma_C = 0.2\][/tex]
- Sample size for Chris:
[tex]\[n_C = 15\][/tex]
2. Recall the formula for the standard deviation of the difference in sample means ([tex]\(\sigma_{\bar{x}_A - \bar{x}_C}\)[/tex]):
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{\left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right)} \][/tex]
3. Substitute the given values into the formula:
- Variance for Alex:
[tex]\[ \sigma_A^2 = (0.38)^2 = 0.1444 \][/tex]
- Variance for Chris:
[tex]\[ \sigma_C^2 = (0.2)^2 = 0.04 \][/tex]
- Calculation for Alex’s contribution to the standard deviation:
[tex]\[ \frac{\sigma_A^2}{n_A} = \frac{0.1444}{10} = 0.01444 \][/tex]
- Calculation for Chris’s contribution to the standard deviation:
[tex]\[ \frac{\sigma_C^2}{n_C} = \frac{0.04}{15} = 0.0026667 \][/tex]
4. Sum the contributions:
[tex]\[ \left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right) = 0.01444 + 0.0026667 = 0.0171067 \][/tex]
5. Take the square root to find the standard deviation:
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{0.0171067} \approx 0.13 \][/tex]
So, the standard deviation of the sampling distribution for [tex]\(\bar{x}_A - \bar{x}_C\)[/tex] is approximately [tex]\(0.13\)[/tex].
Hence, the correct answer is [tex]\(0.13\)[/tex].
1. Identify the given parameters:
- Mean and standard deviation for Alex (Group A):
[tex]\[\mu_A = 5.28\][/tex]
[tex]\[\sigma_A = 0.38\][/tex]
- Sample size for Alex:
[tex]\[n_A = 10\][/tex]
- Mean and standard deviation for Chris (Group C):
[tex]\[\mu_C = 5.45\][/tex]
[tex]\[\sigma_C = 0.2\][/tex]
- Sample size for Chris:
[tex]\[n_C = 15\][/tex]
2. Recall the formula for the standard deviation of the difference in sample means ([tex]\(\sigma_{\bar{x}_A - \bar{x}_C}\)[/tex]):
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{\left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right)} \][/tex]
3. Substitute the given values into the formula:
- Variance for Alex:
[tex]\[ \sigma_A^2 = (0.38)^2 = 0.1444 \][/tex]
- Variance for Chris:
[tex]\[ \sigma_C^2 = (0.2)^2 = 0.04 \][/tex]
- Calculation for Alex’s contribution to the standard deviation:
[tex]\[ \frac{\sigma_A^2}{n_A} = \frac{0.1444}{10} = 0.01444 \][/tex]
- Calculation for Chris’s contribution to the standard deviation:
[tex]\[ \frac{\sigma_C^2}{n_C} = \frac{0.04}{15} = 0.0026667 \][/tex]
4. Sum the contributions:
[tex]\[ \left(\frac{\sigma_A^2}{n_A}\right) + \left(\frac{\sigma_C^2}{n_C}\right) = 0.01444 + 0.0026667 = 0.0171067 \][/tex]
5. Take the square root to find the standard deviation:
[tex]\[ \sigma_{\bar{x}_A - \bar{x}_C} = \sqrt{0.0171067} \approx 0.13 \][/tex]
So, the standard deviation of the sampling distribution for [tex]\(\bar{x}_A - \bar{x}_C\)[/tex] is approximately [tex]\(0.13\)[/tex].
Hence, the correct answer is [tex]\(0.13\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.