Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine whether an equation can be used to show that Vladas' hypothesis is incorrect, we need to check if any of the given equations represents a function of [tex]\( x \)[/tex]. A function of [tex]\( x \)[/tex] means for every value of [tex]\( x \)[/tex], there should be exactly one value of [tex]\( y \)[/tex].
Let's go through each equation step by step:
1. Equation: [tex]\( x + y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = 25 - x \][/tex]
[tex]\[ y = \pm \sqrt{25 - x} \][/tex]
For a given [tex]\( x \)[/tex], [tex]\( y \)[/tex] can be either [tex]\( \sqrt{25 - x} \)[/tex] or [tex]\( -\sqrt{25 - x} \)[/tex]. This implies that for each [tex]\( x \)[/tex] there are two possible values of [tex]\( y \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it provides more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
2. Equation: [tex]\( x^2 - y = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y = x^2 - 25 \][/tex]
For any given [tex]\( x \)[/tex], there is exactly one corresponding value of [tex]\( y \)[/tex], which is [tex]\( x^2 - 25 \)[/tex]. Therefore, this equation is indeed a function because it satisfies the condition of providing exactly one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
3. Equation: [tex]\( x^2 + y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = 25 - x^2 \][/tex]
[tex]\[ y = \pm \sqrt{25 - x^2} \][/tex]
For any given [tex]\( x \)[/tex] within [tex]\( -5 \leq x \leq 5 \)[/tex], there are two possible values of [tex]\( y \)[/tex]: [tex]\( \sqrt{25 - x^2} \)[/tex] and [tex]\( -\sqrt{25 - x^2} \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it can provide more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
4. Equation: [tex]\( x^2 - y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = x^2 - 25 \][/tex]
[tex]\[ y = \pm \sqrt{x^2 - 25} \][/tex]
For [tex]\( |x| \geq 5 \)[/tex], there are two possible values of [tex]\( y \)[/tex]: [tex]\( \sqrt{x^2 - 25} \)[/tex] and [tex]\( -\sqrt{x^2 - 25} \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it provides more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
From the above examination, we observe that only the equation [tex]\( x^2 - y = 25 \)[/tex] (i.e., the second equation) is a function of [tex]\( x \)[/tex]. This disproves Vladas' hypothesis that an equation with a squared term can never be a function of [tex]\( x \)[/tex].
Therefore, the equation [tex]\( x^2 - y = 25 \)[/tex] can be used to show Vladas that his hypothesis is incorrect.
Let's go through each equation step by step:
1. Equation: [tex]\( x + y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = 25 - x \][/tex]
[tex]\[ y = \pm \sqrt{25 - x} \][/tex]
For a given [tex]\( x \)[/tex], [tex]\( y \)[/tex] can be either [tex]\( \sqrt{25 - x} \)[/tex] or [tex]\( -\sqrt{25 - x} \)[/tex]. This implies that for each [tex]\( x \)[/tex] there are two possible values of [tex]\( y \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it provides more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
2. Equation: [tex]\( x^2 - y = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y = x^2 - 25 \][/tex]
For any given [tex]\( x \)[/tex], there is exactly one corresponding value of [tex]\( y \)[/tex], which is [tex]\( x^2 - 25 \)[/tex]. Therefore, this equation is indeed a function because it satisfies the condition of providing exactly one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
3. Equation: [tex]\( x^2 + y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = 25 - x^2 \][/tex]
[tex]\[ y = \pm \sqrt{25 - x^2} \][/tex]
For any given [tex]\( x \)[/tex] within [tex]\( -5 \leq x \leq 5 \)[/tex], there are two possible values of [tex]\( y \)[/tex]: [tex]\( \sqrt{25 - x^2} \)[/tex] and [tex]\( -\sqrt{25 - x^2} \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it can provide more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
4. Equation: [tex]\( x^2 - y^2 = 25 \)[/tex]
Solving for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex],
[tex]\[ y^2 = x^2 - 25 \][/tex]
[tex]\[ y = \pm \sqrt{x^2 - 25} \][/tex]
For [tex]\( |x| \geq 5 \)[/tex], there are two possible values of [tex]\( y \)[/tex]: [tex]\( \sqrt{x^2 - 25} \)[/tex] and [tex]\( -\sqrt{x^2 - 25} \)[/tex]. Therefore, it does not meet the criteria of a function of [tex]\( x \)[/tex] because it provides more than one value of [tex]\( y \)[/tex] for each [tex]\( x \)[/tex].
From the above examination, we observe that only the equation [tex]\( x^2 - y = 25 \)[/tex] (i.e., the second equation) is a function of [tex]\( x \)[/tex]. This disproves Vladas' hypothesis that an equation with a squared term can never be a function of [tex]\( x \)[/tex].
Therefore, the equation [tex]\( x^2 - y = 25 \)[/tex] can be used to show Vladas that his hypothesis is incorrect.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.