At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve this step-by-step.
We know from the problem statement that:
- Each man has a mass ([tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex]) of [tex]\( 90 \, kg \)[/tex].
- The gravitational force ([tex]\( F \)[/tex]) between them is [tex]\( 8.64 \times 10^{-8} \, N \)[/tex].
- The gravitational constant ([tex]\( G \)[/tex]) is [tex]\( 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \)[/tex].
We want to find the distance ([tex]\( r \)[/tex]) between the two men. The formula for gravitational force is:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
Solving for [tex]\(\ r \)[/tex]:
[tex]\[ r^2 = G \cdot \frac{m_1 \cdot m_2}{F} \][/tex]
First, let's compute the value of [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{G \cdot m_1 \cdot m_2}{F} \][/tex]
[tex]\[ r^2 = \frac{6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \cdot 90 \, kg \cdot 90 \, kg}{8.64 \times 10^{-8} \, N} \][/tex]
Given that:
[tex]\[ G = 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \][/tex]
[tex]\[ m_1 = 90 \, kg \][/tex]
[tex]\[ m_2 = 90 \, kg \][/tex]
[tex]\[ F = 8.64 \times 10^{-8} \, N \][/tex]
Plugging in these values:
[tex]\[ r^2 = \frac{(6.67 \times 10^{-11}) \cdot 90 \cdot 90}{8.64 \times 10^{-8}} \][/tex]
[tex]\[ r^2 \approx 6.253125 \][/tex]
Next, we need to find the square root of [tex]\(\ r^2 \)[/tex] to get [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{6.253125} \][/tex]
[tex]\[ r \approx 2.5006 \, m\][/tex]
Therefore, the distance between the two men is approximately [tex]\(2.5\, m\)[/tex].
So, the correct answer is:
C. [tex]\(2.5\, m\)[/tex]
We know from the problem statement that:
- Each man has a mass ([tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex]) of [tex]\( 90 \, kg \)[/tex].
- The gravitational force ([tex]\( F \)[/tex]) between them is [tex]\( 8.64 \times 10^{-8} \, N \)[/tex].
- The gravitational constant ([tex]\( G \)[/tex]) is [tex]\( 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \)[/tex].
We want to find the distance ([tex]\( r \)[/tex]) between the two men. The formula for gravitational force is:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
Solving for [tex]\(\ r \)[/tex]:
[tex]\[ r^2 = G \cdot \frac{m_1 \cdot m_2}{F} \][/tex]
First, let's compute the value of [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{G \cdot m_1 \cdot m_2}{F} \][/tex]
[tex]\[ r^2 = \frac{6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \cdot 90 \, kg \cdot 90 \, kg}{8.64 \times 10^{-8} \, N} \][/tex]
Given that:
[tex]\[ G = 6.67 \times 10^{-11} \, N \cdot (m/kg)^2 \][/tex]
[tex]\[ m_1 = 90 \, kg \][/tex]
[tex]\[ m_2 = 90 \, kg \][/tex]
[tex]\[ F = 8.64 \times 10^{-8} \, N \][/tex]
Plugging in these values:
[tex]\[ r^2 = \frac{(6.67 \times 10^{-11}) \cdot 90 \cdot 90}{8.64 \times 10^{-8}} \][/tex]
[tex]\[ r^2 \approx 6.253125 \][/tex]
Next, we need to find the square root of [tex]\(\ r^2 \)[/tex] to get [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{6.253125} \][/tex]
[tex]\[ r \approx 2.5006 \, m\][/tex]
Therefore, the distance between the two men is approximately [tex]\(2.5\, m\)[/tex].
So, the correct answer is:
C. [tex]\(2.5\, m\)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.