Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's go through the process of rewriting the given expression step by step.
1. Given Expression:
The original expression provided is [tex]\( 12x - 8 \)[/tex].
2. Factorization:
We need to factorize the expression [tex]\( 12x - 8 \)[/tex]. Let's identify the common factor in both terms:
- The terms are [tex]\( 12x \)[/tex] and [tex]\( -8 \)[/tex].
- The greatest common divisor (GCD) of 12 and 8 is 4, since 4 is the largest number that can divide both 12 and 8 without leaving a remainder.
3. Rewriting the Expression:
We can divide both terms by this common factor 4:
[tex]\[ 12x \div 4 = 3x \][/tex]
[tex]\[ -8 \div 4 = -2 \][/tex]
By factoring out the common factor 4 from each term, we rewrite the expression as:
[tex]\[ 12x - 8 = 4(3x - 2) \][/tex]
4. Factors of the Expression:
When we factor [tex]\( 12x - 8 \)[/tex] into [tex]\( 4(3x - 2) \)[/tex], the elements we have factored out are:
[tex]\[ 4 \quad \text{and} \quad (3x - 2) \][/tex]
Hence, 4 and [tex]\( 3x - 2 \)[/tex] are both factors of [tex]\( 12x - 8 \)[/tex].
Thus, in the context of the equation, the factors of [tex]\( 12x - 8 \)[/tex] are [tex]\( 4 \)[/tex] and [tex]\( 3x - 2 \)[/tex].
1. Given Expression:
The original expression provided is [tex]\( 12x - 8 \)[/tex].
2. Factorization:
We need to factorize the expression [tex]\( 12x - 8 \)[/tex]. Let's identify the common factor in both terms:
- The terms are [tex]\( 12x \)[/tex] and [tex]\( -8 \)[/tex].
- The greatest common divisor (GCD) of 12 and 8 is 4, since 4 is the largest number that can divide both 12 and 8 without leaving a remainder.
3. Rewriting the Expression:
We can divide both terms by this common factor 4:
[tex]\[ 12x \div 4 = 3x \][/tex]
[tex]\[ -8 \div 4 = -2 \][/tex]
By factoring out the common factor 4 from each term, we rewrite the expression as:
[tex]\[ 12x - 8 = 4(3x - 2) \][/tex]
4. Factors of the Expression:
When we factor [tex]\( 12x - 8 \)[/tex] into [tex]\( 4(3x - 2) \)[/tex], the elements we have factored out are:
[tex]\[ 4 \quad \text{and} \quad (3x - 2) \][/tex]
Hence, 4 and [tex]\( 3x - 2 \)[/tex] are both factors of [tex]\( 12x - 8 \)[/tex].
Thus, in the context of the equation, the factors of [tex]\( 12x - 8 \)[/tex] are [tex]\( 4 \)[/tex] and [tex]\( 3x - 2 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.