Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the domain of the function [tex]\( y = \sqrt[3]{x} \)[/tex], we need to identify all the possible values of [tex]\( x \)[/tex] for which the function is defined.
The function [tex]\( y = \sqrt[3]{x} \)[/tex] represents the cube root of [tex]\( x \)[/tex]. A cube root function has some important properties:
1. The cube root of any real number is always defined.
2. This means that you can take the cube root of a positive number, a negative number, or zero, and the result will still be a real number.
In other words:
- If [tex]\( x \)[/tex] is positive, [tex]\( \sqrt[3]{x} \)[/tex] will be a positive number.
- If [tex]\( x \)[/tex] is negative, [tex]\( \sqrt[3]{x} \)[/tex] will be a negative number.
- If [tex]\( x \)[/tex] is zero, [tex]\( \sqrt[3]{x} \)[/tex] will be zero.
Since there are no restrictions on [tex]\( x \)[/tex] for the function [tex]\( y = \sqrt[3]{x} \)[/tex], the set of all possible values of [tex]\( x \)[/tex] is all real numbers.
Therefore, the domain of the function [tex]\( y = \sqrt[3]{x} \)[/tex] is [tex]\( -\infty < x < \infty \)[/tex].
The correct choice among the given options is:
[tex]\[ -\infty < x < \infty \][/tex]
The function [tex]\( y = \sqrt[3]{x} \)[/tex] represents the cube root of [tex]\( x \)[/tex]. A cube root function has some important properties:
1. The cube root of any real number is always defined.
2. This means that you can take the cube root of a positive number, a negative number, or zero, and the result will still be a real number.
In other words:
- If [tex]\( x \)[/tex] is positive, [tex]\( \sqrt[3]{x} \)[/tex] will be a positive number.
- If [tex]\( x \)[/tex] is negative, [tex]\( \sqrt[3]{x} \)[/tex] will be a negative number.
- If [tex]\( x \)[/tex] is zero, [tex]\( \sqrt[3]{x} \)[/tex] will be zero.
Since there are no restrictions on [tex]\( x \)[/tex] for the function [tex]\( y = \sqrt[3]{x} \)[/tex], the set of all possible values of [tex]\( x \)[/tex] is all real numbers.
Therefore, the domain of the function [tex]\( y = \sqrt[3]{x} \)[/tex] is [tex]\( -\infty < x < \infty \)[/tex].
The correct choice among the given options is:
[tex]\[ -\infty < x < \infty \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.