Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

What is the [tex]\( y \)[/tex]-intercept of the function [tex]\( F(x) = 2 \cdot 3^x \)[/tex]?

A. [tex]\((2, 0)\)[/tex]
B. [tex]\((0, 6)\)[/tex]
C. [tex]\((0, 2)\)[/tex]
D. [tex]\((0, 3)\)[/tex]

Sagot :

To find the [tex]$y$[/tex]-intercept of the function [tex]$F(x) = 2 \cdot 3^x$[/tex], we need to determine the value of the function when [tex]$x = 0$[/tex]. The [tex]$y$[/tex]-intercept is the point where the graph of the function crosses the [tex]$y$[/tex]-axis.

1. Substitute [tex]$x = 0$[/tex] into the function [tex]$F(x) = 2 \cdot 3^x$[/tex] to find [tex]$F(0)$[/tex].
[tex]\[ F(0) = 2 \cdot 3^0 \][/tex]

2. Simplify the expression. Recall that any number raised to the power of 0 is 1.
[tex]\[ 3^0 = 1 \][/tex]

3. Multiply the constant factor 2 with the result from the previous step.
[tex]\[ F(0) = 2 \cdot 1 = 2 \][/tex]

Therefore, the [tex]$y$[/tex]-intercept of the function [tex]$F(x) = 2 \cdot 3^x$[/tex] is at the point [tex]$(0, 2)$[/tex].

So, the correct answer is:
C. [tex]$(0, 2)$[/tex]