Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Graph the function: [tex]\( y = \frac{-1}{2} \cot \left(\frac{1}{2} x\right) \)[/tex]

Step 1 of 2: Identify the shape of the basic function that has been shifted, reflected, stretched, or compressed.

Answer:


Sagot :

To graph the function [tex]\( y = \frac{-1}{2} \cot \left(\frac{1}{2} x\right) \)[/tex], we first need to understand the shape of the more basic function before any transformations are applied.

### Step 1: Identify the Shape of the Basic Function

The given function is [tex]\( y = \frac{-1}{2} \cot \left(\frac{1}{2} x\right) \)[/tex].

#### Basic Function:
The fundamental function in this case is the cotangent function, [tex]\( y = \cot(x) \)[/tex].

- The cotangent function [tex]\( \cot(x) \)[/tex] has the following characteristics:
- It is undefined at [tex]\( x = n\pi \)[/tex] for integers [tex]\( n \)[/tex], where it has vertical asymptotes.
- It has a period of [tex]\( \pi \)[/tex] because [tex]\( \cot(x + \pi) = \cot(x) \)[/tex].
- It crosses the x-axis at [tex]\( x = \left(n + \frac{1}{2}\right)\pi \)[/tex].

Therefore, the shape of the more basic function that has been shifted, reflected, stretched, or compressed is the cotangent function.

### Summary
Thus, the shape of the basic function is identified as:
- Cotangent function.