At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's solve this problem step by step to determine the distance a car travels to attain a speed of 180 km/h when it starts from rest and accelerates uniformly at a rate of 2.5 m/s².
### Step-by-Step Solution
Step 1: Convert the final speed from km/h to m/s
- The final speed given is 180 km/h.
- To convert this to meters per second (m/s), we use the conversion factor where 1 km/h = 5/18 m/s.
[tex]\( 180 \, \text{km/h} \times \frac{5}{18} \, \text{m/s per km/h} = 50 \, \text{m/s} \)[/tex]
Step 2: Identify the known values
- Initial speed (u) = 0 m/s (since the car is starting from rest)
- Final speed (v) = 50 m/s (as calculated in step 1)
- Acceleration (a) = 2.5 m/s²
Step 3: Use the kinematic equation to find the distance (s)
The kinematic equation that relates initial velocity (u), final velocity (v), acceleration (a), and distance (s) is:
[tex]\( v^2 = u^2 + 2as \)[/tex]
Since we need to find the distance (s), we rearrange the formula to solve for s:
[tex]\( s = \frac{v^2 - u^2}{2a} \)[/tex]
Step 4: Substitute the known values into the equation
- [tex]\( u = 0 \, \text{m/s} \)[/tex]
- [tex]\( v = 50 \, \text{m/s} \)[/tex]
- [tex]\( a = 2.5 \, \text{m/s}^2 \)[/tex]
[tex]\( s = \frac{(50 \, \text{m/s})^2 - (0 \, \text{m/s})^2}{2 \times 2.5 \, \text{m/s}^2} \)[/tex]
[tex]\( s = \frac{2500 \, \text{m}^2/\text{s}^2}{5 \, \text{m/s}^2} \)[/tex]
[tex]\( s = 500 \, \text{m} \)[/tex]
So, the distance the car should travel to attain a speed of 180 km/h is 500 meters.
Final Answer: D. 500 m
### Step-by-Step Solution
Step 1: Convert the final speed from km/h to m/s
- The final speed given is 180 km/h.
- To convert this to meters per second (m/s), we use the conversion factor where 1 km/h = 5/18 m/s.
[tex]\( 180 \, \text{km/h} \times \frac{5}{18} \, \text{m/s per km/h} = 50 \, \text{m/s} \)[/tex]
Step 2: Identify the known values
- Initial speed (u) = 0 m/s (since the car is starting from rest)
- Final speed (v) = 50 m/s (as calculated in step 1)
- Acceleration (a) = 2.5 m/s²
Step 3: Use the kinematic equation to find the distance (s)
The kinematic equation that relates initial velocity (u), final velocity (v), acceleration (a), and distance (s) is:
[tex]\( v^2 = u^2 + 2as \)[/tex]
Since we need to find the distance (s), we rearrange the formula to solve for s:
[tex]\( s = \frac{v^2 - u^2}{2a} \)[/tex]
Step 4: Substitute the known values into the equation
- [tex]\( u = 0 \, \text{m/s} \)[/tex]
- [tex]\( v = 50 \, \text{m/s} \)[/tex]
- [tex]\( a = 2.5 \, \text{m/s}^2 \)[/tex]
[tex]\( s = \frac{(50 \, \text{m/s})^2 - (0 \, \text{m/s})^2}{2 \times 2.5 \, \text{m/s}^2} \)[/tex]
[tex]\( s = \frac{2500 \, \text{m}^2/\text{s}^2}{5 \, \text{m/s}^2} \)[/tex]
[tex]\( s = 500 \, \text{m} \)[/tex]
So, the distance the car should travel to attain a speed of 180 km/h is 500 meters.
Final Answer: D. 500 m
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.