Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's graph the function [tex]\( y = \frac{-1}{2} \cot \left(\frac{1}{2} x\right) \)[/tex] step-by-step by analyzing the transformations individually.
### Step-by-Step Solution:
1. Basic Shape of Cotangent Function:
The basic shape of the [tex]\( \cot(x) \)[/tex] function has vertical asymptotes at multiples of [tex]\( \pi \)[/tex] (i.e., [tex]\( x = n\pi \)[/tex] where [tex]\( n \)[/tex] is an integer). Between these asymptotes, the function decreases from [tex]\(\infty\)[/tex] to [tex]\(-\infty\)[/tex].
2. Horizontal Stretch/Compression:
Inside the function, we have [tex]\(\cot\left(\frac{1}{2} x\right)\)[/tex]. The coefficient [tex]\(\frac{1}{2}\)[/tex] causes a horizontal stretch by a factor of 2. This means that the period of the function, which is originally [tex]\(\pi\)[/tex] for [tex]\(\cot(x)\)[/tex], will now be [tex]\(2\pi\)[/tex].
3. Vertical Stretch/Compression:
The function [tex]\(\frac{-1}{2} \cot\left(\frac{1}{2} x\right)\)[/tex] has a coefficient of [tex]\(\frac{-1}{2}\)[/tex] multiplying it. This will vertically stretch/compress the graph by a factor of [tex]\(\frac{1}{2}\)[/tex]. Each point on the basic [tex]\(\cot\)[/tex] function will be scaled down by a factor of [tex]\(\frac{1}{2}\)[/tex].
4. Reflection Across x-axis:
The negative sign in [tex]\(\frac{-1}{2} \cot\left(\frac{1}{2} x\right)\)[/tex] indicates a reflection across the x-axis. This will flip the graph upside down.
### Summary of Transformations:
1. Reflection Across x-axis:
- Reflect the graph across the x-axis.
2. Vertical Stretch/Compression:
- Compress the graph vertically by a factor of [tex]\(\frac{1}{2}\)[/tex].
3. Horizontal Stretch/Compression:
- Stretch the graph horizontally by a factor of 2. The period changes from [tex]\(\pi\)[/tex] to [tex]\(2\pi\)[/tex].
4. Shifts:
- There are no horizontal or vertical shifts.
### Final Analysis:
- Reflection Across x-axis: Yes, the graph will be reflected across the x-axis.
- Shift Graph Vertically:
- None.
- Shift Graph Horizontally (Phase Shift):
- None.
- Stretch/Compress Graph Vertically:
- Yes, the graph is compressed by a factor of [tex]\(\frac{1}{2}\)[/tex].
So, the final transformations to the [tex]\( y = \cot(x) \)[/tex] graph to obtain [tex]\( y = \frac{-1}{2} \cot\left(\frac{1}{2} x\right) \)[/tex] are:
1. Reflect across the x-axis.
2. Compress vertically by a factor of [tex]\(\frac{1}{2}\)[/tex].
3. Stretch horizontally by a factor of 2.
The graph of [tex]\( y = \frac{-1}{2} \cot\left(\frac{1}{2} x\right) \)[/tex] will look similar to the [tex]\(\cot(x)\)[/tex] graph, but reflected across the x-axis, compressed vertically by [tex]\(\frac{1}{2}\)[/tex], and stretched horizontally by a factor of 2.
### Step-by-Step Solution:
1. Basic Shape of Cotangent Function:
The basic shape of the [tex]\( \cot(x) \)[/tex] function has vertical asymptotes at multiples of [tex]\( \pi \)[/tex] (i.e., [tex]\( x = n\pi \)[/tex] where [tex]\( n \)[/tex] is an integer). Between these asymptotes, the function decreases from [tex]\(\infty\)[/tex] to [tex]\(-\infty\)[/tex].
2. Horizontal Stretch/Compression:
Inside the function, we have [tex]\(\cot\left(\frac{1}{2} x\right)\)[/tex]. The coefficient [tex]\(\frac{1}{2}\)[/tex] causes a horizontal stretch by a factor of 2. This means that the period of the function, which is originally [tex]\(\pi\)[/tex] for [tex]\(\cot(x)\)[/tex], will now be [tex]\(2\pi\)[/tex].
3. Vertical Stretch/Compression:
The function [tex]\(\frac{-1}{2} \cot\left(\frac{1}{2} x\right)\)[/tex] has a coefficient of [tex]\(\frac{-1}{2}\)[/tex] multiplying it. This will vertically stretch/compress the graph by a factor of [tex]\(\frac{1}{2}\)[/tex]. Each point on the basic [tex]\(\cot\)[/tex] function will be scaled down by a factor of [tex]\(\frac{1}{2}\)[/tex].
4. Reflection Across x-axis:
The negative sign in [tex]\(\frac{-1}{2} \cot\left(\frac{1}{2} x\right)\)[/tex] indicates a reflection across the x-axis. This will flip the graph upside down.
### Summary of Transformations:
1. Reflection Across x-axis:
- Reflect the graph across the x-axis.
2. Vertical Stretch/Compression:
- Compress the graph vertically by a factor of [tex]\(\frac{1}{2}\)[/tex].
3. Horizontal Stretch/Compression:
- Stretch the graph horizontally by a factor of 2. The period changes from [tex]\(\pi\)[/tex] to [tex]\(2\pi\)[/tex].
4. Shifts:
- There are no horizontal or vertical shifts.
### Final Analysis:
- Reflection Across x-axis: Yes, the graph will be reflected across the x-axis.
- Shift Graph Vertically:
- None.
- Shift Graph Horizontally (Phase Shift):
- None.
- Stretch/Compress Graph Vertically:
- Yes, the graph is compressed by a factor of [tex]\(\frac{1}{2}\)[/tex].
So, the final transformations to the [tex]\( y = \cot(x) \)[/tex] graph to obtain [tex]\( y = \frac{-1}{2} \cot\left(\frac{1}{2} x\right) \)[/tex] are:
1. Reflect across the x-axis.
2. Compress vertically by a factor of [tex]\(\frac{1}{2}\)[/tex].
3. Stretch horizontally by a factor of 2.
The graph of [tex]\( y = \frac{-1}{2} \cot\left(\frac{1}{2} x\right) \)[/tex] will look similar to the [tex]\(\cot(x)\)[/tex] graph, but reflected across the x-axis, compressed vertically by [tex]\(\frac{1}{2}\)[/tex], and stretched horizontally by a factor of 2.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.