Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the population of Jamaica in 2010, given it was expected to grow exponentially by 1.1% each year since 1990, we follow these steps:
1. Initial Population and Growth Rate:
- Initial population in 1990: [tex]\(2,466,000\)[/tex]
- Annual growth rate: [tex]\(1.1\%\)[/tex]
2. Duration:
- Number of years between 1990 and 2010: [tex]\(2010 - 1990 = 20\)[/tex] years
3. Exponential Growth Formula:
- The exponential growth formula is [tex]\( P(t) = P_0 \times (1 + r)^t \)[/tex]
- [tex]\( P(t) \)[/tex] is the population at time [tex]\( t \)[/tex]
- [tex]\( P_0 \)[/tex] is the initial population
- [tex]\( r \)[/tex] is the growth rate (per time period)
- [tex]\( t \)[/tex] is the number of time periods
4. Substitute and Calculate:
- [tex]\( P_0 = 2,466,000 \)[/tex]
- [tex]\( r = 0.011 \)[/tex] (since [tex]\(1.1\%\)[/tex] as a decimal is [tex]\(0.011\)[/tex])
- [tex]\( t = 20 \)[/tex]
Now we plug these values into the formula:
[tex]\[ P(20) = 2,466,000 \times (1 + 0.011)^{20} \][/tex]
- First, we calculate [tex]\( (1 + 0.011) \)[/tex]:
[tex]\[ 1 + 0.011 = 1.011 \][/tex]
- Then, we raise [tex]\( 1.011 \)[/tex] to the power of 20:
[tex]\[ 1.011^{20} \approx 1.248092 \][/tex]
- Finally, multiply this result by the initial population:
[tex]\[ P(20) = 2,466,000 \times 1.248092 \approx 3,069,136 \][/tex]
So, the expected population of Jamaica in 2010 would be approximately [tex]\( 3,069,136 \)[/tex].
Therefore, the correct answer is:
[tex]\[ 3,069,136 \][/tex]
1. Initial Population and Growth Rate:
- Initial population in 1990: [tex]\(2,466,000\)[/tex]
- Annual growth rate: [tex]\(1.1\%\)[/tex]
2. Duration:
- Number of years between 1990 and 2010: [tex]\(2010 - 1990 = 20\)[/tex] years
3. Exponential Growth Formula:
- The exponential growth formula is [tex]\( P(t) = P_0 \times (1 + r)^t \)[/tex]
- [tex]\( P(t) \)[/tex] is the population at time [tex]\( t \)[/tex]
- [tex]\( P_0 \)[/tex] is the initial population
- [tex]\( r \)[/tex] is the growth rate (per time period)
- [tex]\( t \)[/tex] is the number of time periods
4. Substitute and Calculate:
- [tex]\( P_0 = 2,466,000 \)[/tex]
- [tex]\( r = 0.011 \)[/tex] (since [tex]\(1.1\%\)[/tex] as a decimal is [tex]\(0.011\)[/tex])
- [tex]\( t = 20 \)[/tex]
Now we plug these values into the formula:
[tex]\[ P(20) = 2,466,000 \times (1 + 0.011)^{20} \][/tex]
- First, we calculate [tex]\( (1 + 0.011) \)[/tex]:
[tex]\[ 1 + 0.011 = 1.011 \][/tex]
- Then, we raise [tex]\( 1.011 \)[/tex] to the power of 20:
[tex]\[ 1.011^{20} \approx 1.248092 \][/tex]
- Finally, multiply this result by the initial population:
[tex]\[ P(20) = 2,466,000 \times 1.248092 \approx 3,069,136 \][/tex]
So, the expected population of Jamaica in 2010 would be approximately [tex]\( 3,069,136 \)[/tex].
Therefore, the correct answer is:
[tex]\[ 3,069,136 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.