At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the probability of the complement of a given event, we use the concept of complementary probabilities. The probability of an event and its complement sum to 1.
Given:
[tex]\[ P(\text{not yellow}) = \frac{\overline{15}}{15} \][/tex]
We first express [tex]\( P(\text{not yellow}) \)[/tex] in a simplified form. Since we have [tex]\( \frac{\overline{15}}{15} \)[/tex], this is equivalent to 1 (since any number divided by itself is 1).
Thus, we have:
[tex]\[ P(\text{not yellow}) = 1 \][/tex]
Since the probability of [tex]\( \text{not yellow} \)[/tex] is 1, the probability of its complement, which is the probability of yellow, would be:
[tex]\[ P(\text{yellow}) = 1 - P(\text{not yellow}) \][/tex]
[tex]\[ P(\text{yellow}) = 1 - 1 \][/tex]
[tex]\[ P(\text{yellow}) = 0 \][/tex]
So, the probability of yellow is 0.
Comparing this to the provided choices:
- [tex]\( P(\text{yellow}) = \frac{8}{15} \)[/tex]
- [tex]\( P(\text{yellow}) = \frac{11}{15} \)[/tex]
- [tex]\( P(\text{not yellow}) = \frac{8}{15} \)[/tex]
- [tex]\( P(\text{not yellow}) = \frac{11}{15} \)[/tex]
None of these choices directly state that [tex]\( P(\text{yellow}) = 0 \)[/tex]; however, based on the complementary relationship:
The correct understanding is [tex]\( P(\text{yellow}) = 0 \)[/tex] since [tex]\( P(\text{not yellow}) = 1 \)[/tex]. Therefore, none of the choices provided are correct based on the given information.
Given:
[tex]\[ P(\text{not yellow}) = \frac{\overline{15}}{15} \][/tex]
We first express [tex]\( P(\text{not yellow}) \)[/tex] in a simplified form. Since we have [tex]\( \frac{\overline{15}}{15} \)[/tex], this is equivalent to 1 (since any number divided by itself is 1).
Thus, we have:
[tex]\[ P(\text{not yellow}) = 1 \][/tex]
Since the probability of [tex]\( \text{not yellow} \)[/tex] is 1, the probability of its complement, which is the probability of yellow, would be:
[tex]\[ P(\text{yellow}) = 1 - P(\text{not yellow}) \][/tex]
[tex]\[ P(\text{yellow}) = 1 - 1 \][/tex]
[tex]\[ P(\text{yellow}) = 0 \][/tex]
So, the probability of yellow is 0.
Comparing this to the provided choices:
- [tex]\( P(\text{yellow}) = \frac{8}{15} \)[/tex]
- [tex]\( P(\text{yellow}) = \frac{11}{15} \)[/tex]
- [tex]\( P(\text{not yellow}) = \frac{8}{15} \)[/tex]
- [tex]\( P(\text{not yellow}) = \frac{11}{15} \)[/tex]
None of these choices directly state that [tex]\( P(\text{yellow}) = 0 \)[/tex]; however, based on the complementary relationship:
The correct understanding is [tex]\( P(\text{yellow}) = 0 \)[/tex] since [tex]\( P(\text{not yellow}) = 1 \)[/tex]. Therefore, none of the choices provided are correct based on the given information.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.