Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the point on the number line that is [tex]\(\frac{2}{5}\)[/tex] of the way from [tex]\(A = 31\)[/tex] to [tex]\(B = 6\)[/tex], let's follow these steps:
1. Determine the direction and the distance between [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
- The distance from [tex]\(A\)[/tex] to [tex]\(B\)[/tex] is calculated as [tex]\(B - A\)[/tex].
- So, [tex]\(B - A = 6 - 31 = -25\)[/tex].
2. Calculate the fraction of this distance:
- We need to find the point that is [tex]\(\frac{2}{5}\)[/tex] of this distance.
- The fraction of the distance is [tex]\(\frac{2}{5} \times -25\)[/tex].
3. Compute [tex]\(\frac{2}{5} \times -25\)[/tex]:
- [tex]\(\frac{2}{5} \times -25 = -10\)[/tex].
4. Find the location of the point by starting at [tex]\(A\)[/tex] and moving this fraction of the distance:
- Starting at [tex]\(A = 31\)[/tex], we move [tex]\(-10\)[/tex], as calculated above.
- Therefore, the location of the point is [tex]\(31 + (-10) = 21\)[/tex].
So, the point that is [tex]\(\frac{2}{5}\)[/tex] of the way from [tex]\(A\)[/tex] to [tex]\(B\)[/tex] is located at 21.
Thus, the correct answer is:
C. 21
1. Determine the direction and the distance between [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
- The distance from [tex]\(A\)[/tex] to [tex]\(B\)[/tex] is calculated as [tex]\(B - A\)[/tex].
- So, [tex]\(B - A = 6 - 31 = -25\)[/tex].
2. Calculate the fraction of this distance:
- We need to find the point that is [tex]\(\frac{2}{5}\)[/tex] of this distance.
- The fraction of the distance is [tex]\(\frac{2}{5} \times -25\)[/tex].
3. Compute [tex]\(\frac{2}{5} \times -25\)[/tex]:
- [tex]\(\frac{2}{5} \times -25 = -10\)[/tex].
4. Find the location of the point by starting at [tex]\(A\)[/tex] and moving this fraction of the distance:
- Starting at [tex]\(A = 31\)[/tex], we move [tex]\(-10\)[/tex], as calculated above.
- Therefore, the location of the point is [tex]\(31 + (-10) = 21\)[/tex].
So, the point that is [tex]\(\frac{2}{5}\)[/tex] of the way from [tex]\(A\)[/tex] to [tex]\(B\)[/tex] is located at 21.
Thus, the correct answer is:
C. 21
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.