Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the equation of a line that is parallel to [tex]\(-2x + 3y = -6\)[/tex] and passes through the point [tex]\((-2, 0)\)[/tex], follow these steps:
1. Determine the slope of the given line:
The given equation of the line is [tex]\(-2x + 3y = -6\)[/tex].
To find the slope, we first convert this equation to the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
[tex]\[ -2x + 3y = -6 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ 3y = 2x - 6 \][/tex]
[tex]\[ y = \frac{2}{3}x - 2 \][/tex]
So, the slope [tex]\( m \)[/tex] of the given line is [tex]\(\frac{2}{3}\)[/tex].
2. Construct the equation of the new line:
Since parallel lines have the same slope, the slope of the new line is also [tex]\(\frac{2}{3}\)[/tex].
Use the point-slope form of the equation of a line, [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is the point the line passes through.
Given point [tex]\((-2, 0)\)[/tex]:
[tex]\[ y - 0 = \frac{2}{3}(x - (-2)) \][/tex]
Simplify the equation:
[tex]\[ y = \frac{2}{3}(x + 2) \][/tex]
3. Convert the equation to the standard form:
Expand and simplify the above equation:
[tex]\[ y = \frac{2}{3}x + \frac{4}{3} \][/tex]
To eliminate the fraction, multiply through by 3:
[tex]\[ 3y = 2x + 4 \][/tex]
Rearrange to the standard form [tex]\( Ax + By = C \)[/tex]:
[tex]\[ 2x - 3y = -4 \][/tex]
Thus, the equation of the line that is parallel to [tex]\(-2x + 3y = -6\)[/tex] and passes through the point [tex]\((-2, 0)\)[/tex] is:
[tex]\[ 2x - 3y = -4 \][/tex]
1. Determine the slope of the given line:
The given equation of the line is [tex]\(-2x + 3y = -6\)[/tex].
To find the slope, we first convert this equation to the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
[tex]\[ -2x + 3y = -6 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ 3y = 2x - 6 \][/tex]
[tex]\[ y = \frac{2}{3}x - 2 \][/tex]
So, the slope [tex]\( m \)[/tex] of the given line is [tex]\(\frac{2}{3}\)[/tex].
2. Construct the equation of the new line:
Since parallel lines have the same slope, the slope of the new line is also [tex]\(\frac{2}{3}\)[/tex].
Use the point-slope form of the equation of a line, [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is the point the line passes through.
Given point [tex]\((-2, 0)\)[/tex]:
[tex]\[ y - 0 = \frac{2}{3}(x - (-2)) \][/tex]
Simplify the equation:
[tex]\[ y = \frac{2}{3}(x + 2) \][/tex]
3. Convert the equation to the standard form:
Expand and simplify the above equation:
[tex]\[ y = \frac{2}{3}x + \frac{4}{3} \][/tex]
To eliminate the fraction, multiply through by 3:
[tex]\[ 3y = 2x + 4 \][/tex]
Rearrange to the standard form [tex]\( Ax + By = C \)[/tex]:
[tex]\[ 2x - 3y = -4 \][/tex]
Thus, the equation of the line that is parallel to [tex]\(-2x + 3y = -6\)[/tex] and passes through the point [tex]\((-2, 0)\)[/tex] is:
[tex]\[ 2x - 3y = -4 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.