Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve this problem step-by-step.
1. Understand the problem:
- We are given that sand is falling onto a conical pile at a rate of [tex]\( \frac{dV}{dt} = 10 \)[/tex] cubic feet per minute.
- The diameter of the base of the cone is three times the height, [tex]\(d = 3h\)[/tex]. Hence, the radius [tex]\(r\)[/tex] is [tex]\( \frac{3h}{2} \)[/tex] (since radius is half of the diameter).
- We need to find the rate at which the height [tex]\(h\)[/tex] of the pile is changing when the pile is 22 feet high, i.e., [tex]\(h = 22\)[/tex] feet.
2. Volume of a cone formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
3. Relate the radius [tex]\(r\)[/tex] to the height [tex]\(h\)[/tex]:
[tex]\[ r = \frac{3h}{2} \][/tex]
4. Substitute [tex]\(r\)[/tex] in the volume formula:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{3h}{2}\right)^2 h \][/tex]
5. Simplify the volume formula:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{9h^2}{4}\right) h = \frac{1}{3} \pi \cdot \frac{9h^2}{4} \cdot h = \frac{3\pi}{4} h^3 \][/tex]
6. Differentiate both sides of the volume equation with respect to time [tex]\(t\)[/tex]:
[tex]\[ \frac{dV}{dt} = \frac{3\pi}{4} \cdot 3h^2 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dV}{dt} = \frac{9\pi}{4} h^2 \cdot \frac{dh}{dt} \][/tex]
7. Solve for [tex]\(\frac{dh}{dt}\)[/tex]:
[tex]\[ \frac{dh}{dt} = \frac{ \frac{dV}{dt} }{ \frac{9\pi}{4} h^2 } \][/tex]
8. Substitute the given values:
[tex]\[ \frac{dh}{dt} = \frac{10}{ \frac{9\pi}{4} (22)^2 } \][/tex]
9. Simplify:
[tex]\[ \frac{dh}{dt} = \frac{10 \cdot 4}{ 9\pi \cdot 484 } \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{40}{ 4356 \pi } \][/tex]
10. Calculate the numerical result:
[tex]\[ \frac{dh}{dt} \approx 0.0029229557959944046 \text{ ft/min} \][/tex]
Therefore, the rate at which the height of the pile is changing when the pile is 22 feet high is approximately [tex]\( \boxed{0.0029229557959944046} \)[/tex] ft/min.
1. Understand the problem:
- We are given that sand is falling onto a conical pile at a rate of [tex]\( \frac{dV}{dt} = 10 \)[/tex] cubic feet per minute.
- The diameter of the base of the cone is three times the height, [tex]\(d = 3h\)[/tex]. Hence, the radius [tex]\(r\)[/tex] is [tex]\( \frac{3h}{2} \)[/tex] (since radius is half of the diameter).
- We need to find the rate at which the height [tex]\(h\)[/tex] of the pile is changing when the pile is 22 feet high, i.e., [tex]\(h = 22\)[/tex] feet.
2. Volume of a cone formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
3. Relate the radius [tex]\(r\)[/tex] to the height [tex]\(h\)[/tex]:
[tex]\[ r = \frac{3h}{2} \][/tex]
4. Substitute [tex]\(r\)[/tex] in the volume formula:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{3h}{2}\right)^2 h \][/tex]
5. Simplify the volume formula:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{9h^2}{4}\right) h = \frac{1}{3} \pi \cdot \frac{9h^2}{4} \cdot h = \frac{3\pi}{4} h^3 \][/tex]
6. Differentiate both sides of the volume equation with respect to time [tex]\(t\)[/tex]:
[tex]\[ \frac{dV}{dt} = \frac{3\pi}{4} \cdot 3h^2 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dV}{dt} = \frac{9\pi}{4} h^2 \cdot \frac{dh}{dt} \][/tex]
7. Solve for [tex]\(\frac{dh}{dt}\)[/tex]:
[tex]\[ \frac{dh}{dt} = \frac{ \frac{dV}{dt} }{ \frac{9\pi}{4} h^2 } \][/tex]
8. Substitute the given values:
[tex]\[ \frac{dh}{dt} = \frac{10}{ \frac{9\pi}{4} (22)^2 } \][/tex]
9. Simplify:
[tex]\[ \frac{dh}{dt} = \frac{10 \cdot 4}{ 9\pi \cdot 484 } \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{40}{ 4356 \pi } \][/tex]
10. Calculate the numerical result:
[tex]\[ \frac{dh}{dt} \approx 0.0029229557959944046 \text{ ft/min} \][/tex]
Therefore, the rate at which the height of the pile is changing when the pile is 22 feet high is approximately [tex]\( \boxed{0.0029229557959944046} \)[/tex] ft/min.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.