Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

At a sand and gravel plant, sand is falling off a conveyor and onto a conical pile at a rate of 10 cubic feet per minute. The diameter of the base of the cone is approximately three times the altitude. At what rate (in ft/min) is the height of the pile changing when the pile is 22 feet high?

Hint: The formula for the volume of a cone is [tex]\( V = \frac{1}{3} \pi r^2 h \)[/tex].

[tex]\[ \frac{dh}{dt} = \square \ \text{ft/min} \][/tex]

Sagot :

Certainly! Let's solve this problem step-by-step.

1. Understand the problem:
- We are given that sand is falling onto a conical pile at a rate of [tex]\( \frac{dV}{dt} = 10 \)[/tex] cubic feet per minute.
- The diameter of the base of the cone is three times the height, [tex]\(d = 3h\)[/tex]. Hence, the radius [tex]\(r\)[/tex] is [tex]\( \frac{3h}{2} \)[/tex] (since radius is half of the diameter).
- We need to find the rate at which the height [tex]\(h\)[/tex] of the pile is changing when the pile is 22 feet high, i.e., [tex]\(h = 22\)[/tex] feet.

2. Volume of a cone formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

3. Relate the radius [tex]\(r\)[/tex] to the height [tex]\(h\)[/tex]:
[tex]\[ r = \frac{3h}{2} \][/tex]

4. Substitute [tex]\(r\)[/tex] in the volume formula:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{3h}{2}\right)^2 h \][/tex]

5. Simplify the volume formula:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{9h^2}{4}\right) h = \frac{1}{3} \pi \cdot \frac{9h^2}{4} \cdot h = \frac{3\pi}{4} h^3 \][/tex]

6. Differentiate both sides of the volume equation with respect to time [tex]\(t\)[/tex]:
[tex]\[ \frac{dV}{dt} = \frac{3\pi}{4} \cdot 3h^2 \cdot \frac{dh}{dt} \][/tex]
[tex]\[ \frac{dV}{dt} = \frac{9\pi}{4} h^2 \cdot \frac{dh}{dt} \][/tex]

7. Solve for [tex]\(\frac{dh}{dt}\)[/tex]:
[tex]\[ \frac{dh}{dt} = \frac{ \frac{dV}{dt} }{ \frac{9\pi}{4} h^2 } \][/tex]

8. Substitute the given values:
[tex]\[ \frac{dh}{dt} = \frac{10}{ \frac{9\pi}{4} (22)^2 } \][/tex]

9. Simplify:
[tex]\[ \frac{dh}{dt} = \frac{10 \cdot 4}{ 9\pi \cdot 484 } \][/tex]
[tex]\[ \frac{dh}{dt} = \frac{40}{ 4356 \pi } \][/tex]

10. Calculate the numerical result:
[tex]\[ \frac{dh}{dt} \approx 0.0029229557959944046 \text{ ft/min} \][/tex]

Therefore, the rate at which the height of the pile is changing when the pile is 22 feet high is approximately [tex]\( \boxed{0.0029229557959944046} \)[/tex] ft/min.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.