Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine if any of the given radicals are like radicals to [tex]\( \sqrt[3]{54} \)[/tex], we'll need to simplify each one and compare them.
1. Simplifying [tex]\( \sqrt[3]{54} \)[/tex]:
[tex]\[ \sqrt[3]{54} \][/tex]
54 does not have any perfect cubes as factors other than 1, so it remains as [tex]\( \sqrt[3]{54} \)[/tex].
2. Simplifying [tex]\( \sqrt[3]{24} \)[/tex]:
[tex]\[ \sqrt[3]{24} \][/tex]
24 does not have perfect cubes as factors other than 1, so it remains as [tex]\( \sqrt[3]{24} \)[/tex].
3. Simplifying [tex]\( \sqrt[3]{162} \)[/tex]:
[tex]\[ \sqrt[3]{162} \][/tex]
162 can be factored into [tex]\( 2 \times 81 \)[/tex], and since 81 is [tex]\( 3^4 \)[/tex], it does not reduce to a simpler form for cube roots, so it remains [tex]\( \sqrt[3]{162} \)[/tex].
4. Simplifying [tex]\( \sqrt{128} \)[/tex]:
[tex]\[ \sqrt{128} \][/tex]
128 can be factored into [tex]\( 2^7 \)[/tex]. Its square root is [tex]\( \sqrt{2^7} = 2^{7/2} \)[/tex].
5. Simplifying [tex]\( \sqrt[3]{128} \)[/tex]:
[tex]\[ \sqrt[3]{128} \][/tex]
128 can be factored into [tex]\( 2^7 \)[/tex]. Its cube root is [tex]\( \sqrt[3]{2^7} = 2^{7/3} \)[/tex].
We now compare the simplified forms:
- [tex]\( \sqrt[3]{54} \)[/tex]
- [tex]\( \sqrt[3]{24} \)[/tex]
- [tex]\( \sqrt[3]{162} \)[/tex]
- [tex]\( \sqrt{128} = 2^{7/2} \)[/tex]
- [tex]\( \sqrt[3]{128} = 2^{7/3} \)[/tex]
Given the results, none of the provided radicals simplify to give a like radical to [tex]\( \sqrt[3]{54} \)[/tex]. Therefore, the answer is:
None of the provided expressions are like radicals to [tex]\( \sqrt[3]{54} \)[/tex].
1. Simplifying [tex]\( \sqrt[3]{54} \)[/tex]:
[tex]\[ \sqrt[3]{54} \][/tex]
54 does not have any perfect cubes as factors other than 1, so it remains as [tex]\( \sqrt[3]{54} \)[/tex].
2. Simplifying [tex]\( \sqrt[3]{24} \)[/tex]:
[tex]\[ \sqrt[3]{24} \][/tex]
24 does not have perfect cubes as factors other than 1, so it remains as [tex]\( \sqrt[3]{24} \)[/tex].
3. Simplifying [tex]\( \sqrt[3]{162} \)[/tex]:
[tex]\[ \sqrt[3]{162} \][/tex]
162 can be factored into [tex]\( 2 \times 81 \)[/tex], and since 81 is [tex]\( 3^4 \)[/tex], it does not reduce to a simpler form for cube roots, so it remains [tex]\( \sqrt[3]{162} \)[/tex].
4. Simplifying [tex]\( \sqrt{128} \)[/tex]:
[tex]\[ \sqrt{128} \][/tex]
128 can be factored into [tex]\( 2^7 \)[/tex]. Its square root is [tex]\( \sqrt{2^7} = 2^{7/2} \)[/tex].
5. Simplifying [tex]\( \sqrt[3]{128} \)[/tex]:
[tex]\[ \sqrt[3]{128} \][/tex]
128 can be factored into [tex]\( 2^7 \)[/tex]. Its cube root is [tex]\( \sqrt[3]{2^7} = 2^{7/3} \)[/tex].
We now compare the simplified forms:
- [tex]\( \sqrt[3]{54} \)[/tex]
- [tex]\( \sqrt[3]{24} \)[/tex]
- [tex]\( \sqrt[3]{162} \)[/tex]
- [tex]\( \sqrt{128} = 2^{7/2} \)[/tex]
- [tex]\( \sqrt[3]{128} = 2^{7/3} \)[/tex]
Given the results, none of the provided radicals simplify to give a like radical to [tex]\( \sqrt[3]{54} \)[/tex]. Therefore, the answer is:
None of the provided expressions are like radicals to [tex]\( \sqrt[3]{54} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.