Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine if any of the given radicals are like radicals to [tex]\( \sqrt[3]{54} \)[/tex], we'll need to simplify each one and compare them.
1. Simplifying [tex]\( \sqrt[3]{54} \)[/tex]:
[tex]\[ \sqrt[3]{54} \][/tex]
54 does not have any perfect cubes as factors other than 1, so it remains as [tex]\( \sqrt[3]{54} \)[/tex].
2. Simplifying [tex]\( \sqrt[3]{24} \)[/tex]:
[tex]\[ \sqrt[3]{24} \][/tex]
24 does not have perfect cubes as factors other than 1, so it remains as [tex]\( \sqrt[3]{24} \)[/tex].
3. Simplifying [tex]\( \sqrt[3]{162} \)[/tex]:
[tex]\[ \sqrt[3]{162} \][/tex]
162 can be factored into [tex]\( 2 \times 81 \)[/tex], and since 81 is [tex]\( 3^4 \)[/tex], it does not reduce to a simpler form for cube roots, so it remains [tex]\( \sqrt[3]{162} \)[/tex].
4. Simplifying [tex]\( \sqrt{128} \)[/tex]:
[tex]\[ \sqrt{128} \][/tex]
128 can be factored into [tex]\( 2^7 \)[/tex]. Its square root is [tex]\( \sqrt{2^7} = 2^{7/2} \)[/tex].
5. Simplifying [tex]\( \sqrt[3]{128} \)[/tex]:
[tex]\[ \sqrt[3]{128} \][/tex]
128 can be factored into [tex]\( 2^7 \)[/tex]. Its cube root is [tex]\( \sqrt[3]{2^7} = 2^{7/3} \)[/tex].
We now compare the simplified forms:
- [tex]\( \sqrt[3]{54} \)[/tex]
- [tex]\( \sqrt[3]{24} \)[/tex]
- [tex]\( \sqrt[3]{162} \)[/tex]
- [tex]\( \sqrt{128} = 2^{7/2} \)[/tex]
- [tex]\( \sqrt[3]{128} = 2^{7/3} \)[/tex]
Given the results, none of the provided radicals simplify to give a like radical to [tex]\( \sqrt[3]{54} \)[/tex]. Therefore, the answer is:
None of the provided expressions are like radicals to [tex]\( \sqrt[3]{54} \)[/tex].
1. Simplifying [tex]\( \sqrt[3]{54} \)[/tex]:
[tex]\[ \sqrt[3]{54} \][/tex]
54 does not have any perfect cubes as factors other than 1, so it remains as [tex]\( \sqrt[3]{54} \)[/tex].
2. Simplifying [tex]\( \sqrt[3]{24} \)[/tex]:
[tex]\[ \sqrt[3]{24} \][/tex]
24 does not have perfect cubes as factors other than 1, so it remains as [tex]\( \sqrt[3]{24} \)[/tex].
3. Simplifying [tex]\( \sqrt[3]{162} \)[/tex]:
[tex]\[ \sqrt[3]{162} \][/tex]
162 can be factored into [tex]\( 2 \times 81 \)[/tex], and since 81 is [tex]\( 3^4 \)[/tex], it does not reduce to a simpler form for cube roots, so it remains [tex]\( \sqrt[3]{162} \)[/tex].
4. Simplifying [tex]\( \sqrt{128} \)[/tex]:
[tex]\[ \sqrt{128} \][/tex]
128 can be factored into [tex]\( 2^7 \)[/tex]. Its square root is [tex]\( \sqrt{2^7} = 2^{7/2} \)[/tex].
5. Simplifying [tex]\( \sqrt[3]{128} \)[/tex]:
[tex]\[ \sqrt[3]{128} \][/tex]
128 can be factored into [tex]\( 2^7 \)[/tex]. Its cube root is [tex]\( \sqrt[3]{2^7} = 2^{7/3} \)[/tex].
We now compare the simplified forms:
- [tex]\( \sqrt[3]{54} \)[/tex]
- [tex]\( \sqrt[3]{24} \)[/tex]
- [tex]\( \sqrt[3]{162} \)[/tex]
- [tex]\( \sqrt{128} = 2^{7/2} \)[/tex]
- [tex]\( \sqrt[3]{128} = 2^{7/3} \)[/tex]
Given the results, none of the provided radicals simplify to give a like radical to [tex]\( \sqrt[3]{54} \)[/tex]. Therefore, the answer is:
None of the provided expressions are like radicals to [tex]\( \sqrt[3]{54} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.