Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine if each linear function is increasing or decreasing, we need to look at the slope of each function. The slope is represented by the coefficient of [tex]\(x\)[/tex] in the linear equation of the form [tex]\(f(x) = mx + c\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(c\)[/tex] is the y-intercept.
1. For the function [tex]\( f(x) = -8x + 1 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(-8\)[/tex].
- Since the slope is negative, this function is decreasing.
2. For the function [tex]\( f(x) = 9x - 4 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(9\)[/tex].
- Since the slope is positive, this function is increasing.
3. For the function [tex]\( f(x) = -x - 2 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(-1\)[/tex].
- Since the slope is negative, this function is decreasing.
4. For the function [tex]\( f(x) = x - 6 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(1\)[/tex].
- Since the slope is positive, this function is increasing.
5. For the function [tex]\( f(x) = -4x - 9 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(-4\)[/tex].
- Since the slope is negative, this function is decreasing.
6. For the function [tex]\( f(x) = -10x + 2 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(-10\)[/tex].
- Since the slope is negative, this function is decreasing.
Therefore, the increasing and decreasing classification for each function is as follows:
[tex]\[ \begin{array}{|c|c|} \hline \text{Function} & \text{Classification} \\ \hline f(x) = -8x + 1 & \text{decreasing} \\ f(x) = 9x - 4 & \text{increasing} \\ f(x) = -x - 2 & \text{decreasing} \\ f(x) = x - 6 & \text{increasing} \\ f(x) = -4x - 9 & \text{decreasing} \\ f(x) = -10x + 2 & \text{decreasing} \\ \hline \end{array} \][/tex]
1. For the function [tex]\( f(x) = -8x + 1 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(-8\)[/tex].
- Since the slope is negative, this function is decreasing.
2. For the function [tex]\( f(x) = 9x - 4 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(9\)[/tex].
- Since the slope is positive, this function is increasing.
3. For the function [tex]\( f(x) = -x - 2 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(-1\)[/tex].
- Since the slope is negative, this function is decreasing.
4. For the function [tex]\( f(x) = x - 6 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(1\)[/tex].
- Since the slope is positive, this function is increasing.
5. For the function [tex]\( f(x) = -4x - 9 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(-4\)[/tex].
- Since the slope is negative, this function is decreasing.
6. For the function [tex]\( f(x) = -10x + 2 \)[/tex]:
- The slope ([tex]\(m\)[/tex]) is [tex]\(-10\)[/tex].
- Since the slope is negative, this function is decreasing.
Therefore, the increasing and decreasing classification for each function is as follows:
[tex]\[ \begin{array}{|c|c|} \hline \text{Function} & \text{Classification} \\ \hline f(x) = -8x + 1 & \text{decreasing} \\ f(x) = 9x - 4 & \text{increasing} \\ f(x) = -x - 2 & \text{decreasing} \\ f(x) = x - 6 & \text{increasing} \\ f(x) = -4x - 9 & \text{decreasing} \\ f(x) = -10x + 2 & \text{decreasing} \\ \hline \end{array} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.