Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to determine the correct fraction of the total horizontal distance between points [tex]\( C \)[/tex] and [tex]\( D \)[/tex] that corresponds to the portion [tex]\( CE \)[/tex].
Given:
- The coordinates of point [tex]\( C \)[/tex] are [tex]\( (3, 4) \)[/tex].
- The coordinates of point [tex]\( D \)[/tex] are [tex]\( (11, 3) \)[/tex].
- The ratio [tex]\( CE : DE \)[/tex] is [tex]\( 3 : 5 \)[/tex].
First, let's find the total ratio. The total ratio is obtained by adding the individual parts of the ratio:
[tex]\[ 3 + 5 = 8 \][/tex]
Next, we determine the fraction of the total horizontal distance between [tex]\( C \)[/tex] and [tex]\( D \)[/tex] that corresponds to [tex]\( CE \)[/tex]. Since [tex]\( CE \)[/tex] is the portion that we are interested in, its fraction is calculated as follows:
[tex]\[ \text{Fraction of } CE = \frac{3}{8} \][/tex]
Therefore, the fraction that Grace should use to find the [tex]\( x \)[/tex]-coordinate of point [tex]\( E \)[/tex] is:
[tex]\[ \frac{3}{8} \][/tex]
Thus, the correct answer is:
[tex]\[ \frac{3}{8} \][/tex]
Given:
- The coordinates of point [tex]\( C \)[/tex] are [tex]\( (3, 4) \)[/tex].
- The coordinates of point [tex]\( D \)[/tex] are [tex]\( (11, 3) \)[/tex].
- The ratio [tex]\( CE : DE \)[/tex] is [tex]\( 3 : 5 \)[/tex].
First, let's find the total ratio. The total ratio is obtained by adding the individual parts of the ratio:
[tex]\[ 3 + 5 = 8 \][/tex]
Next, we determine the fraction of the total horizontal distance between [tex]\( C \)[/tex] and [tex]\( D \)[/tex] that corresponds to [tex]\( CE \)[/tex]. Since [tex]\( CE \)[/tex] is the portion that we are interested in, its fraction is calculated as follows:
[tex]\[ \text{Fraction of } CE = \frac{3}{8} \][/tex]
Therefore, the fraction that Grace should use to find the [tex]\( x \)[/tex]-coordinate of point [tex]\( E \)[/tex] is:
[tex]\[ \frac{3}{8} \][/tex]
Thus, the correct answer is:
[tex]\[ \frac{3}{8} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.