Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Graph the exponential function [tex]\( g(x) = 4^{x+3} \)[/tex].

1. Plot two points on the graph.
2. Draw the asymptote.
3. Give the domain and range using interval notation.

Domain: [tex]\( \square \)[/tex]

Range: [tex]\( \square \)[/tex]


Sagot :

Certainly! Let's graph the exponential function [tex]\( g(x) = 4^{x+3} \)[/tex]. We'll plot two points, draw the asymptote, and finally determine the domain and range. Here's a step-by-step solution:

### 1. Understanding the Function
The function [tex]\( g(x) = 4^{x+3} \)[/tex] is an exponential function with a base of 4. The general form of an exponential function is [tex]\( a^{(x+c)} \)[/tex], where [tex]\( a \)[/tex] is the base and [tex]\( c \)[/tex] is a constant.

### 2. Choosing Points to Plot

We can choose two points for visualization:
- Let’s choose [tex]\( x = -2 \)[/tex]
- Let’s choose [tex]\( x = 2 \)[/tex]

#### For [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = 4^{(-2+3)} = 4^1 = 4 \][/tex]

#### For [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = 4^{(2+3)} = 4^5 = 1024 \][/tex]

So, the points to plot are [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex].

### 3. Drawing the Asymptote
The horizontal asymptote of an exponential function [tex]\( g(x) = 4^{x+3} \)[/tex] is [tex]\( y = 0 \)[/tex]. This is because, as [tex]\( x \)[/tex] approaches negative infinity, the exponential value approaches 0 but never actually reaches it.

### 4. Graphical Representation

#### (Manually or using graphing software, plot the following):
- The point [tex]\((-2, 4)\)[/tex]
- The point [tex]\((2, 1024)\)[/tex]
- Draw a smooth curve passing through these points showing the exponential growth.
- Draw the horizontal asymptote at [tex]\( y = 0 \)[/tex].

### 5. Domain and Range

#### Domain:
An exponential function [tex]\( g(x) = 4^{x+3} \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. Therefore, the domain is:
[tex]\[ \text{Domain: } (-\infty, \infty) \][/tex]

#### Range:
Since [tex]\( 4^{x+3} \)[/tex] is always positive for any real number [tex]\( x \)[/tex] (it never reaches 0 or goes negative), the range is:
[tex]\[ \text{Range: } (0, \infty) \][/tex]

### Summary of the findings:
- Points: [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex]
- Asymptote: [tex]\( y = 0 \)[/tex]
- Domain: [tex]\( (-\infty, \infty) \)[/tex]
- Range: [tex]\( (0, \infty) \)[/tex]

### Conclusion:
To correctly visualize and describe the function [tex]\( g(x)=4^{x+3} \)[/tex]:
1. Plot the points [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex].
2. Draw the asymptote at [tex]\( y = 0 \)[/tex].
3. Clearly note that the function grows exponentially from left to right.

Ensure you use graphing tools appropriately if doing this manually or digitally.