Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's graph the exponential function [tex]\( g(x) = 4^{x+3} \)[/tex]. We'll plot two points, draw the asymptote, and finally determine the domain and range. Here's a step-by-step solution:
### 1. Understanding the Function
The function [tex]\( g(x) = 4^{x+3} \)[/tex] is an exponential function with a base of 4. The general form of an exponential function is [tex]\( a^{(x+c)} \)[/tex], where [tex]\( a \)[/tex] is the base and [tex]\( c \)[/tex] is a constant.
### 2. Choosing Points to Plot
We can choose two points for visualization:
- Let’s choose [tex]\( x = -2 \)[/tex]
- Let’s choose [tex]\( x = 2 \)[/tex]
#### For [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = 4^{(-2+3)} = 4^1 = 4 \][/tex]
#### For [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = 4^{(2+3)} = 4^5 = 1024 \][/tex]
So, the points to plot are [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex].
### 3. Drawing the Asymptote
The horizontal asymptote of an exponential function [tex]\( g(x) = 4^{x+3} \)[/tex] is [tex]\( y = 0 \)[/tex]. This is because, as [tex]\( x \)[/tex] approaches negative infinity, the exponential value approaches 0 but never actually reaches it.
### 4. Graphical Representation
#### (Manually or using graphing software, plot the following):
- The point [tex]\((-2, 4)\)[/tex]
- The point [tex]\((2, 1024)\)[/tex]
- Draw a smooth curve passing through these points showing the exponential growth.
- Draw the horizontal asymptote at [tex]\( y = 0 \)[/tex].
### 5. Domain and Range
#### Domain:
An exponential function [tex]\( g(x) = 4^{x+3} \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. Therefore, the domain is:
[tex]\[ \text{Domain: } (-\infty, \infty) \][/tex]
#### Range:
Since [tex]\( 4^{x+3} \)[/tex] is always positive for any real number [tex]\( x \)[/tex] (it never reaches 0 or goes negative), the range is:
[tex]\[ \text{Range: } (0, \infty) \][/tex]
### Summary of the findings:
- Points: [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex]
- Asymptote: [tex]\( y = 0 \)[/tex]
- Domain: [tex]\( (-\infty, \infty) \)[/tex]
- Range: [tex]\( (0, \infty) \)[/tex]
### Conclusion:
To correctly visualize and describe the function [tex]\( g(x)=4^{x+3} \)[/tex]:
1. Plot the points [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex].
2. Draw the asymptote at [tex]\( y = 0 \)[/tex].
3. Clearly note that the function grows exponentially from left to right.
Ensure you use graphing tools appropriately if doing this manually or digitally.
### 1. Understanding the Function
The function [tex]\( g(x) = 4^{x+3} \)[/tex] is an exponential function with a base of 4. The general form of an exponential function is [tex]\( a^{(x+c)} \)[/tex], where [tex]\( a \)[/tex] is the base and [tex]\( c \)[/tex] is a constant.
### 2. Choosing Points to Plot
We can choose two points for visualization:
- Let’s choose [tex]\( x = -2 \)[/tex]
- Let’s choose [tex]\( x = 2 \)[/tex]
#### For [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = 4^{(-2+3)} = 4^1 = 4 \][/tex]
#### For [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = 4^{(2+3)} = 4^5 = 1024 \][/tex]
So, the points to plot are [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex].
### 3. Drawing the Asymptote
The horizontal asymptote of an exponential function [tex]\( g(x) = 4^{x+3} \)[/tex] is [tex]\( y = 0 \)[/tex]. This is because, as [tex]\( x \)[/tex] approaches negative infinity, the exponential value approaches 0 but never actually reaches it.
### 4. Graphical Representation
#### (Manually or using graphing software, plot the following):
- The point [tex]\((-2, 4)\)[/tex]
- The point [tex]\((2, 1024)\)[/tex]
- Draw a smooth curve passing through these points showing the exponential growth.
- Draw the horizontal asymptote at [tex]\( y = 0 \)[/tex].
### 5. Domain and Range
#### Domain:
An exponential function [tex]\( g(x) = 4^{x+3} \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. Therefore, the domain is:
[tex]\[ \text{Domain: } (-\infty, \infty) \][/tex]
#### Range:
Since [tex]\( 4^{x+3} \)[/tex] is always positive for any real number [tex]\( x \)[/tex] (it never reaches 0 or goes negative), the range is:
[tex]\[ \text{Range: } (0, \infty) \][/tex]
### Summary of the findings:
- Points: [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex]
- Asymptote: [tex]\( y = 0 \)[/tex]
- Domain: [tex]\( (-\infty, \infty) \)[/tex]
- Range: [tex]\( (0, \infty) \)[/tex]
### Conclusion:
To correctly visualize and describe the function [tex]\( g(x)=4^{x+3} \)[/tex]:
1. Plot the points [tex]\((-2, 4)\)[/tex] and [tex]\((2, 1024)\)[/tex].
2. Draw the asymptote at [tex]\( y = 0 \)[/tex].
3. Clearly note that the function grows exponentially from left to right.
Ensure you use graphing tools appropriately if doing this manually or digitally.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.