Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's analyze each of the given equations and determine their equivalence to the given expression [tex]\( 4s = t + 2 \)[/tex].
Given:
[tex]\[ 4s = t + 2 \][/tex]
1. Checking the equation [tex]\( s = t - 2 \)[/tex]
Substitute [tex]\( s \)[/tex] in the given equation:
[tex]\[ 4(t - 2) = t + 2 \][/tex]
Simplify:
[tex]\[ 4t - 8 = t + 2 \][/tex]
[tex]\[ 4t - t = 2 + 8 \][/tex]
[tex]\[ 3t = 10 \][/tex]
This simplifies to:
[tex]\[ t = \frac{10}{3} \][/tex]
Which means for a general case, it doesn't simplify to the given equation, hence not equivalent.
2. Checking the equation [tex]\( s = \frac{4}{t + 2} \)[/tex]
Substitute [tex]\( s \)[/tex] in the given equation:
[tex]\[ 4 \left(\frac{4}{t + 2}\right) = t + 2 \][/tex]
Simplify:
[tex]\[ \frac{16}{t + 2} = t + 2 \][/tex]
Multiply both sides by [tex]\( t + 2 \)[/tex] to clear the fraction:
[tex]\[ 16 = (t + 2)^2 \][/tex]
[tex]\[ 16 = t^2 + 4t + 4 \][/tex]
[tex]\[ t^2 + 4t + 4 - 16 = 0 \][/tex]
[tex]\[ t^2 + 4t - 12 = 0 \][/tex]
This is a quadratic equation and doesn't simplify to the given formula, hence not equivalent.
3. Checking the equation [tex]\( s = \frac{t + 2}{4} \)[/tex]
Substitute [tex]\( s \)[/tex] in the given equation:
[tex]\[ 4 \left(\frac{t + 2}{4}\right) = t + 2 \][/tex]
Simplify:
[tex]\[ t + 2 = t + 2 \][/tex]
This is a true statement, which means this equation is equivalent to the given equation.
4. Checking the equation [tex]\( s = t + 6 \)[/tex]
Substitute [tex]\( s \)[/tex] in the given equation:
[tex]\[ 4(t + 6) = t + 2 \][/tex]
Simplify:
[tex]\[ 4t + 24 = t + 2 \][/tex]
[tex]\[ 4t - t = 2 - 24 \][/tex]
[tex]\[ 3t = -22 \][/tex]
[tex]\[ t = -\frac{22}{3} \][/tex]
This doesn't match the given equation for a general [tex]\( t \)[/tex], hence not equivalent.
Based on this analysis:
[tex]\[ (s = \frac{t + 2}{4}) \][/tex] is the equation that is equivalent to [tex]\( 4s = t + 2 \)[/tex].
Given:
[tex]\[ 4s = t + 2 \][/tex]
1. Checking the equation [tex]\( s = t - 2 \)[/tex]
Substitute [tex]\( s \)[/tex] in the given equation:
[tex]\[ 4(t - 2) = t + 2 \][/tex]
Simplify:
[tex]\[ 4t - 8 = t + 2 \][/tex]
[tex]\[ 4t - t = 2 + 8 \][/tex]
[tex]\[ 3t = 10 \][/tex]
This simplifies to:
[tex]\[ t = \frac{10}{3} \][/tex]
Which means for a general case, it doesn't simplify to the given equation, hence not equivalent.
2. Checking the equation [tex]\( s = \frac{4}{t + 2} \)[/tex]
Substitute [tex]\( s \)[/tex] in the given equation:
[tex]\[ 4 \left(\frac{4}{t + 2}\right) = t + 2 \][/tex]
Simplify:
[tex]\[ \frac{16}{t + 2} = t + 2 \][/tex]
Multiply both sides by [tex]\( t + 2 \)[/tex] to clear the fraction:
[tex]\[ 16 = (t + 2)^2 \][/tex]
[tex]\[ 16 = t^2 + 4t + 4 \][/tex]
[tex]\[ t^2 + 4t + 4 - 16 = 0 \][/tex]
[tex]\[ t^2 + 4t - 12 = 0 \][/tex]
This is a quadratic equation and doesn't simplify to the given formula, hence not equivalent.
3. Checking the equation [tex]\( s = \frac{t + 2}{4} \)[/tex]
Substitute [tex]\( s \)[/tex] in the given equation:
[tex]\[ 4 \left(\frac{t + 2}{4}\right) = t + 2 \][/tex]
Simplify:
[tex]\[ t + 2 = t + 2 \][/tex]
This is a true statement, which means this equation is equivalent to the given equation.
4. Checking the equation [tex]\( s = t + 6 \)[/tex]
Substitute [tex]\( s \)[/tex] in the given equation:
[tex]\[ 4(t + 6) = t + 2 \][/tex]
Simplify:
[tex]\[ 4t + 24 = t + 2 \][/tex]
[tex]\[ 4t - t = 2 - 24 \][/tex]
[tex]\[ 3t = -22 \][/tex]
[tex]\[ t = -\frac{22}{3} \][/tex]
This doesn't match the given equation for a general [tex]\( t \)[/tex], hence not equivalent.
Based on this analysis:
[tex]\[ (s = \frac{t + 2}{4}) \][/tex] is the equation that is equivalent to [tex]\( 4s = t + 2 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.