Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the value of [tex]\( x \)[/tex] for which [tex]\( (f+g)(x) = 0 \)[/tex], we should first express [tex]\( (f+g)(x) \)[/tex] by combining the given functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex].
Given:
[tex]\[ f(x) = x^2 - 2x \][/tex]
[tex]\[ g(x) = 6x + 4 \][/tex]
We combine these to find [tex]\( (f+g)(x) \)[/tex]:
[tex]\[ (f+g)(x) = f(x) + g(x) \][/tex]
[tex]\[ (f+g)(x) = (x^2 - 2x) + (6x + 4) \][/tex]
[tex]\[ (f+g)(x) = x^2 - 2x + 6x + 4 \][/tex]
[tex]\[ (f+g)(x) = x^2 + 4x + 4 \][/tex]
Now, we need to solve the equation [tex]\( (f+g)(x) = 0 \)[/tex]:
[tex]\[ x^2 + 4x + 4 = 0 \][/tex]
This is a quadratic equation. To solve it, we can factorize it or use the quadratic formula. In this case, the quadratic can be factorized as:
[tex]\[ x^2 + 4x + 4 = (x + 2)(x + 2) \][/tex]
[tex]\[ x^2 + 4x + 4 = (x + 2)^2 \][/tex]
Setting the equation to zero:
[tex]\[ (x + 2)^2 = 0 \][/tex]
Taking the square root of both sides:
[tex]\[ x + 2 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = -2 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] for which [tex]\( (f+g)(x) = 0 \)[/tex] is:
[tex]\[ \boxed{-2} \][/tex]
Given:
[tex]\[ f(x) = x^2 - 2x \][/tex]
[tex]\[ g(x) = 6x + 4 \][/tex]
We combine these to find [tex]\( (f+g)(x) \)[/tex]:
[tex]\[ (f+g)(x) = f(x) + g(x) \][/tex]
[tex]\[ (f+g)(x) = (x^2 - 2x) + (6x + 4) \][/tex]
[tex]\[ (f+g)(x) = x^2 - 2x + 6x + 4 \][/tex]
[tex]\[ (f+g)(x) = x^2 + 4x + 4 \][/tex]
Now, we need to solve the equation [tex]\( (f+g)(x) = 0 \)[/tex]:
[tex]\[ x^2 + 4x + 4 = 0 \][/tex]
This is a quadratic equation. To solve it, we can factorize it or use the quadratic formula. In this case, the quadratic can be factorized as:
[tex]\[ x^2 + 4x + 4 = (x + 2)(x + 2) \][/tex]
[tex]\[ x^2 + 4x + 4 = (x + 2)^2 \][/tex]
Setting the equation to zero:
[tex]\[ (x + 2)^2 = 0 \][/tex]
Taking the square root of both sides:
[tex]\[ x + 2 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = -2 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] for which [tex]\( (f+g)(x) = 0 \)[/tex] is:
[tex]\[ \boxed{-2} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.