Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the approximate value of [tex]\( P(z \geq -1.25) \)[/tex] for a standard normal distribution, follow these steps:
1. Understand the problem:
We are asked to find the probability that the standard normal variable [tex]\( z \)[/tex] is greater than or equal to [tex]\(-1.25\)[/tex]. We have a standard normal table which provides cumulative probabilities from the mean ([tex]\( z = 0 \)[/tex]) up to specified positive values of [tex]\( z \)[/tex].
2. Use symmetry of the normal distribution:
The standard normal distribution is symmetric around [tex]\( z = 0 \)[/tex]. This means that [tex]\( P(z \geq -1.25) \)[/tex] is equivalent to [tex]\( P(z \leq 1.25) \)[/tex], because the probability of the distribution to the right of [tex]\(-1.25\)[/tex] is the same as the probability to the left of [tex]\( 1.25 \)[/tex].
3. Look up the cumulative probability:
According to the table, the cumulative probability [tex]\( P(z \leq 1.25) \)[/tex] is given as [tex]\( 0.8944 \)[/tex]. This means that the probability that [tex]\( z \)[/tex] is less than or equal to [tex]\( 1.25 \)[/tex] is [tex]\( 0.8944 \)[/tex].
4. Interpret the result:
Since the cumulative probability [tex]\( P(z \leq 1.25) = 0.8944 \)[/tex], which is equivalent to [tex]\( P(z \geq -1.25) = 0.8944 \)[/tex], we can convert this probability into a percentage to match the answer choices.
5. Convert to percentage:
Multiply the probability by 100 to get the percentage:
[tex]\[ 0.8944 \times 100 = 89.44\% \][/tex]
The closest option provided is [tex]\( 89\% \)[/tex].
Therefore, the approximate value of [tex]\( P(z \geq -1.25) \)[/tex] is [tex]\( 89\% \)[/tex].
The correct answer is [tex]\( 89\% \)[/tex], which matches the option given in the problem.
1. Understand the problem:
We are asked to find the probability that the standard normal variable [tex]\( z \)[/tex] is greater than or equal to [tex]\(-1.25\)[/tex]. We have a standard normal table which provides cumulative probabilities from the mean ([tex]\( z = 0 \)[/tex]) up to specified positive values of [tex]\( z \)[/tex].
2. Use symmetry of the normal distribution:
The standard normal distribution is symmetric around [tex]\( z = 0 \)[/tex]. This means that [tex]\( P(z \geq -1.25) \)[/tex] is equivalent to [tex]\( P(z \leq 1.25) \)[/tex], because the probability of the distribution to the right of [tex]\(-1.25\)[/tex] is the same as the probability to the left of [tex]\( 1.25 \)[/tex].
3. Look up the cumulative probability:
According to the table, the cumulative probability [tex]\( P(z \leq 1.25) \)[/tex] is given as [tex]\( 0.8944 \)[/tex]. This means that the probability that [tex]\( z \)[/tex] is less than or equal to [tex]\( 1.25 \)[/tex] is [tex]\( 0.8944 \)[/tex].
4. Interpret the result:
Since the cumulative probability [tex]\( P(z \leq 1.25) = 0.8944 \)[/tex], which is equivalent to [tex]\( P(z \geq -1.25) = 0.8944 \)[/tex], we can convert this probability into a percentage to match the answer choices.
5. Convert to percentage:
Multiply the probability by 100 to get the percentage:
[tex]\[ 0.8944 \times 100 = 89.44\% \][/tex]
The closest option provided is [tex]\( 89\% \)[/tex].
Therefore, the approximate value of [tex]\( P(z \geq -1.25) \)[/tex] is [tex]\( 89\% \)[/tex].
The correct answer is [tex]\( 89\% \)[/tex], which matches the option given in the problem.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.