Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the approximate value of [tex]\( P(z \geq -1.25) \)[/tex] for a standard normal distribution, follow these steps:
1. Understand the problem:
We are asked to find the probability that the standard normal variable [tex]\( z \)[/tex] is greater than or equal to [tex]\(-1.25\)[/tex]. We have a standard normal table which provides cumulative probabilities from the mean ([tex]\( z = 0 \)[/tex]) up to specified positive values of [tex]\( z \)[/tex].
2. Use symmetry of the normal distribution:
The standard normal distribution is symmetric around [tex]\( z = 0 \)[/tex]. This means that [tex]\( P(z \geq -1.25) \)[/tex] is equivalent to [tex]\( P(z \leq 1.25) \)[/tex], because the probability of the distribution to the right of [tex]\(-1.25\)[/tex] is the same as the probability to the left of [tex]\( 1.25 \)[/tex].
3. Look up the cumulative probability:
According to the table, the cumulative probability [tex]\( P(z \leq 1.25) \)[/tex] is given as [tex]\( 0.8944 \)[/tex]. This means that the probability that [tex]\( z \)[/tex] is less than or equal to [tex]\( 1.25 \)[/tex] is [tex]\( 0.8944 \)[/tex].
4. Interpret the result:
Since the cumulative probability [tex]\( P(z \leq 1.25) = 0.8944 \)[/tex], which is equivalent to [tex]\( P(z \geq -1.25) = 0.8944 \)[/tex], we can convert this probability into a percentage to match the answer choices.
5. Convert to percentage:
Multiply the probability by 100 to get the percentage:
[tex]\[ 0.8944 \times 100 = 89.44\% \][/tex]
The closest option provided is [tex]\( 89\% \)[/tex].
Therefore, the approximate value of [tex]\( P(z \geq -1.25) \)[/tex] is [tex]\( 89\% \)[/tex].
The correct answer is [tex]\( 89\% \)[/tex], which matches the option given in the problem.
1. Understand the problem:
We are asked to find the probability that the standard normal variable [tex]\( z \)[/tex] is greater than or equal to [tex]\(-1.25\)[/tex]. We have a standard normal table which provides cumulative probabilities from the mean ([tex]\( z = 0 \)[/tex]) up to specified positive values of [tex]\( z \)[/tex].
2. Use symmetry of the normal distribution:
The standard normal distribution is symmetric around [tex]\( z = 0 \)[/tex]. This means that [tex]\( P(z \geq -1.25) \)[/tex] is equivalent to [tex]\( P(z \leq 1.25) \)[/tex], because the probability of the distribution to the right of [tex]\(-1.25\)[/tex] is the same as the probability to the left of [tex]\( 1.25 \)[/tex].
3. Look up the cumulative probability:
According to the table, the cumulative probability [tex]\( P(z \leq 1.25) \)[/tex] is given as [tex]\( 0.8944 \)[/tex]. This means that the probability that [tex]\( z \)[/tex] is less than or equal to [tex]\( 1.25 \)[/tex] is [tex]\( 0.8944 \)[/tex].
4. Interpret the result:
Since the cumulative probability [tex]\( P(z \leq 1.25) = 0.8944 \)[/tex], which is equivalent to [tex]\( P(z \geq -1.25) = 0.8944 \)[/tex], we can convert this probability into a percentage to match the answer choices.
5. Convert to percentage:
Multiply the probability by 100 to get the percentage:
[tex]\[ 0.8944 \times 100 = 89.44\% \][/tex]
The closest option provided is [tex]\( 89\% \)[/tex].
Therefore, the approximate value of [tex]\( P(z \geq -1.25) \)[/tex] is [tex]\( 89\% \)[/tex].
The correct answer is [tex]\( 89\% \)[/tex], which matches the option given in the problem.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.