Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find which statement is equivalent to [tex]\( P(z \geq -1.7) \)[/tex], let's analyze each option step-by-step:
1. [tex]\( P(z \geq -1.7) \)[/tex]
This is the given probability that we need to find an equivalent for.
2. [tex]\( 1 - P(z \geq -1.7) \)[/tex]
This represents the complement of [tex]\( P(z \geq -1.7) \)[/tex], which is [tex]\( P(z < -1.7) \)[/tex]. Since we are looking for an expression equivalent to [tex]\( P(z \geq -1.7) \)[/tex], this is not the correct equivalent.
3. [tex]\( P(z \leq 1.7) \)[/tex]
[tex]\( P(z \leq 1.7) \)[/tex] can be useful since:
- The standard normal distribution is symmetric about the mean of 0.
- The cumulative distribution function (CDF) [tex]\( P(z \leq a) \)[/tex] gives the area under the curve to the left of [tex]\( a \)[/tex].
Let's compare this with the given probability [tex]\( P(z \geq -1.7) \)[/tex]. The cumulative probability related to [tex]\( P(z \geq -1.7) \)[/tex] is:
[tex]\[ P(z \geq -1.7) = 1 - P(z \leq -1.7) \][/tex]
Knowing the properties of the standard normal distribution, [tex]\( P(z \leq 1.7) \)[/tex] is indeed the equivalent because both represent the area under the normal curve:
[tex]\[ 1 - P(z \leq -1.7) = P(z \leq 1.7) \][/tex]
4. [tex]\( 1 - P(z \geq 1.7) \)[/tex]
This represents the complement of [tex]\( P(z \geq 1.7) \)[/tex], which is [tex]\( P(z < 1.7) \)[/tex]. This statement is correct for [tex]\( P(z \leq 1.7) \)[/tex], not for [tex]\( P(z \geq -1.7) \)[/tex]. Hence, this is not the correct equivalent either.
Thus, the equivalent statement to [tex]\( P(z \geq -1.7) \)[/tex] is [tex]\( P(z \leq 1.7) \)[/tex]. The correct equivalent statement is:
[tex]\[ P(z \leq 1.7) \][/tex]
1. [tex]\( P(z \geq -1.7) \)[/tex]
This is the given probability that we need to find an equivalent for.
2. [tex]\( 1 - P(z \geq -1.7) \)[/tex]
This represents the complement of [tex]\( P(z \geq -1.7) \)[/tex], which is [tex]\( P(z < -1.7) \)[/tex]. Since we are looking for an expression equivalent to [tex]\( P(z \geq -1.7) \)[/tex], this is not the correct equivalent.
3. [tex]\( P(z \leq 1.7) \)[/tex]
[tex]\( P(z \leq 1.7) \)[/tex] can be useful since:
- The standard normal distribution is symmetric about the mean of 0.
- The cumulative distribution function (CDF) [tex]\( P(z \leq a) \)[/tex] gives the area under the curve to the left of [tex]\( a \)[/tex].
Let's compare this with the given probability [tex]\( P(z \geq -1.7) \)[/tex]. The cumulative probability related to [tex]\( P(z \geq -1.7) \)[/tex] is:
[tex]\[ P(z \geq -1.7) = 1 - P(z \leq -1.7) \][/tex]
Knowing the properties of the standard normal distribution, [tex]\( P(z \leq 1.7) \)[/tex] is indeed the equivalent because both represent the area under the normal curve:
[tex]\[ 1 - P(z \leq -1.7) = P(z \leq 1.7) \][/tex]
4. [tex]\( 1 - P(z \geq 1.7) \)[/tex]
This represents the complement of [tex]\( P(z \geq 1.7) \)[/tex], which is [tex]\( P(z < 1.7) \)[/tex]. This statement is correct for [tex]\( P(z \leq 1.7) \)[/tex], not for [tex]\( P(z \geq -1.7) \)[/tex]. Hence, this is not the correct equivalent either.
Thus, the equivalent statement to [tex]\( P(z \geq -1.7) \)[/tex] is [tex]\( P(z \leq 1.7) \)[/tex]. The correct equivalent statement is:
[tex]\[ P(z \leq 1.7) \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.