Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the maximum value of [tex]\(\delta > 0\)[/tex] that satisfies the limit claim for [tex]\(\varepsilon = 0.2\)[/tex], let's go through the problem step-by-step.
We are given:
[tex]\[ \lim _{x \rightarrow 2}\left(5-\frac{x}{2}\right)=4 \][/tex]
This means that as [tex]\(x\)[/tex] approaches [tex]\(2\)[/tex], the function [tex]\(f(x) = 5 - \frac{x}{2}\)[/tex] approaches the value [tex]\(4\)[/tex].
We need to find the maximum value of [tex]\(\delta\)[/tex] such that:
[tex]\[ 0 < |x - 2| < \delta \implies |f(x) - 4| < 0.2 \][/tex]
1. Evaluate the inequality [tex]\(|f(x) - 4| < 0.2\)[/tex]:
[tex]\[ |(5 - \frac{x}{2}) - 4| < 0.2 \][/tex]
Simplify the expression inside the absolute value:
[tex]\[ |1 - \frac{x}{2}| < 0.2 \][/tex]
2. Remove the absolute value by considering the bounds:
[tex]\[ -0.2 < 1 - \frac{x}{2} < 0.2 \][/tex]
3. Solve the inequalities to find the bounds for [tex]\(x\)[/tex]:
For the lower bound:
[tex]\[ -0.2 < 1 - \frac{x}{2} \][/tex]
[tex]\[ -1.2 < -\frac{x}{2} \][/tex]
[tex]\[ 1.2 > \frac{x}{2} \][/tex]
[tex]\[ x < 2.4 \][/tex]
For the upper bound:
[tex]\[ 1 - \frac{x}{2} < 0.2 \][/tex]
[tex]\[ 1 - 0.2 < \frac{x}{2} \][/tex]
[tex]\[ 0.8 < \frac{x}{2} \][/tex]
[tex]\[ 1.6 < x \][/tex]
4. Combine the bounds to get the interval for [tex]\(x\)[/tex]:
[tex]\[ 1.6 < x < 2.4 \][/tex]
5. Determine [tex]\(\delta\)[/tex]:
The maximum [tex]\(\delta\)[/tex] is the smallest distance from [tex]\(x = 2\)[/tex] to either endpoint of the interval [tex]\(1.6 < x < 2.4\)[/tex].
[tex]\[ \delta_{\text{lower}} = 2 - 1.6 = 0.4 \][/tex]
[tex]\[ \delta_{\text{upper}} = 2.4 - 2 = 0.4 \][/tex]
Therefore, [tex]\(\delta = \min(\delta_{\text{lower}}, \delta_{\text{upper}}) = 0.4\)[/tex].
So, the maximum value of [tex]\(\delta\)[/tex] that satisfies the given limit claim is:
[tex]\[ \delta = 0.4 \][/tex]
We are given:
[tex]\[ \lim _{x \rightarrow 2}\left(5-\frac{x}{2}\right)=4 \][/tex]
This means that as [tex]\(x\)[/tex] approaches [tex]\(2\)[/tex], the function [tex]\(f(x) = 5 - \frac{x}{2}\)[/tex] approaches the value [tex]\(4\)[/tex].
We need to find the maximum value of [tex]\(\delta\)[/tex] such that:
[tex]\[ 0 < |x - 2| < \delta \implies |f(x) - 4| < 0.2 \][/tex]
1. Evaluate the inequality [tex]\(|f(x) - 4| < 0.2\)[/tex]:
[tex]\[ |(5 - \frac{x}{2}) - 4| < 0.2 \][/tex]
Simplify the expression inside the absolute value:
[tex]\[ |1 - \frac{x}{2}| < 0.2 \][/tex]
2. Remove the absolute value by considering the bounds:
[tex]\[ -0.2 < 1 - \frac{x}{2} < 0.2 \][/tex]
3. Solve the inequalities to find the bounds for [tex]\(x\)[/tex]:
For the lower bound:
[tex]\[ -0.2 < 1 - \frac{x}{2} \][/tex]
[tex]\[ -1.2 < -\frac{x}{2} \][/tex]
[tex]\[ 1.2 > \frac{x}{2} \][/tex]
[tex]\[ x < 2.4 \][/tex]
For the upper bound:
[tex]\[ 1 - \frac{x}{2} < 0.2 \][/tex]
[tex]\[ 1 - 0.2 < \frac{x}{2} \][/tex]
[tex]\[ 0.8 < \frac{x}{2} \][/tex]
[tex]\[ 1.6 < x \][/tex]
4. Combine the bounds to get the interval for [tex]\(x\)[/tex]:
[tex]\[ 1.6 < x < 2.4 \][/tex]
5. Determine [tex]\(\delta\)[/tex]:
The maximum [tex]\(\delta\)[/tex] is the smallest distance from [tex]\(x = 2\)[/tex] to either endpoint of the interval [tex]\(1.6 < x < 2.4\)[/tex].
[tex]\[ \delta_{\text{lower}} = 2 - 1.6 = 0.4 \][/tex]
[tex]\[ \delta_{\text{upper}} = 2.4 - 2 = 0.4 \][/tex]
Therefore, [tex]\(\delta = \min(\delta_{\text{lower}}, \delta_{\text{upper}}) = 0.4\)[/tex].
So, the maximum value of [tex]\(\delta\)[/tex] that satisfies the given limit claim is:
[tex]\[ \delta = 0.4 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.