At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve this problem, we will determine two key quantities:
1. The area under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex].
2. The volume of the solid formed by revolving this area around the [tex]\( y \)[/tex]-axis.
### Step 1: Finding the Area Under the Curve
The area [tex]\( A \)[/tex] under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex] is given by the definite integral of the function with respect to [tex]\( x \)[/tex]:
[tex]\[ A = \int_{0}^{1} \frac{1}{x^4 + 1} \, dx \][/tex]
The result of evaluating this integral numerically is:
[tex]\[ A = 0.8669729873399111 \][/tex]
### Step 2: Finding the Volume of Revolution
To find the volume of the solid formed by revolving the given region around the [tex]\( y \)[/tex]-axis, we use the method of disks. The volume formula, when revolving around the [tex]\( y \)[/tex]-axis, is given by:
[tex]\[ V = 2\pi \int_{x_{\text{lower}}}^{x_{\text{upper}}} x \cdot f(x) \, dx \][/tex]
However, based on the previous calculation, we can also express the volume formula in a more straightforward way. The volume of revolution around the [tex]\( y \)[/tex]-axis for this function is given by multiplying the area under the curve by [tex]\(\pi\)[/tex]:
[tex]\[ V = \pi \times A \][/tex]
Substituting the computed area:
[tex]\[ V = \pi \times 0.8669729873399111 \approx 2.7236759678878615 \][/tex]
### Summary
- The area under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex] is approximately [tex]\( 0.8669729873399111 \)[/tex].
- The volume of the solid formed by revolving this area around the [tex]\( y \)[/tex]-axis is approximately [tex]\( 2.7236759678878615 \)[/tex].
Thus, the final answers are:
- Area under the curve: [tex]\( 0.8669729873399111 \)[/tex]
- Volume of the solid of revolution: [tex]\( 2.7236759678878615 \)[/tex]
1. The area under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex].
2. The volume of the solid formed by revolving this area around the [tex]\( y \)[/tex]-axis.
### Step 1: Finding the Area Under the Curve
The area [tex]\( A \)[/tex] under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex] is given by the definite integral of the function with respect to [tex]\( x \)[/tex]:
[tex]\[ A = \int_{0}^{1} \frac{1}{x^4 + 1} \, dx \][/tex]
The result of evaluating this integral numerically is:
[tex]\[ A = 0.8669729873399111 \][/tex]
### Step 2: Finding the Volume of Revolution
To find the volume of the solid formed by revolving the given region around the [tex]\( y \)[/tex]-axis, we use the method of disks. The volume formula, when revolving around the [tex]\( y \)[/tex]-axis, is given by:
[tex]\[ V = 2\pi \int_{x_{\text{lower}}}^{x_{\text{upper}}} x \cdot f(x) \, dx \][/tex]
However, based on the previous calculation, we can also express the volume formula in a more straightforward way. The volume of revolution around the [tex]\( y \)[/tex]-axis for this function is given by multiplying the area under the curve by [tex]\(\pi\)[/tex]:
[tex]\[ V = \pi \times A \][/tex]
Substituting the computed area:
[tex]\[ V = \pi \times 0.8669729873399111 \approx 2.7236759678878615 \][/tex]
### Summary
- The area under the curve [tex]\( y = \frac{1}{x^4 + 1} \)[/tex] from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex] is approximately [tex]\( 0.8669729873399111 \)[/tex].
- The volume of the solid formed by revolving this area around the [tex]\( y \)[/tex]-axis is approximately [tex]\( 2.7236759678878615 \)[/tex].
Thus, the final answers are:
- Area under the curve: [tex]\( 0.8669729873399111 \)[/tex]
- Volume of the solid of revolution: [tex]\( 2.7236759678878615 \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.