Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's solve this step by step.
First, let's carefully understand and define the given parameters:
- At [tex]\( 25^{\circ} C \)[/tex], the solubility of the salt [tex]\( AB \)[/tex] in water is [tex]\( 0.0400 \, \text{mol/L} \)[/tex]. This means that at saturation, [tex]\( 0.0400 \, \text{mol/L} \)[/tex] of [tex]\( AB \)[/tex] dissolves in water.
Now, write the dissociation reaction for the salt [tex]\( AB \)[/tex]:
[tex]\[ \text{AB}(s) \rightleftharpoons \text{A}^+(aq) + \text{B}^-(aq) \][/tex]
Since the salt [tex]\( AB \)[/tex] dissociates into its constituent ions [tex]\( \text{A}^+ \)[/tex] and [tex]\( \text{B}^- \)[/tex], the concentrations of the ions in a saturated solution are both equal to the solubility of [tex]\( AB \)[/tex]. Therefore:
[tex]\[ [\text{A}^+] = 0.0400 \, \text{mol/L} \][/tex]
[tex]\[ [\text{B}^-] = 0.0400 \, \text{mol/L} \][/tex]
The solubility product constant [tex]\( K_{sp} \)[/tex] is calculated by multiplying the molar concentrations of the ions in the saturated solution:
[tex]\[ K_{sp} = [\text{A}^+][\text{B}^-] \][/tex]
Substitute the concentrations into the equation:
[tex]\[ K_{sp} = (0.0400 \, \text{mol/L}) \cdot (0.0400 \, \text{mol/L}) \][/tex]
[tex]\[ K_{sp} = 0.0400^2 \][/tex]
[tex]\[ K_{sp} = 0.0016 \][/tex]
Therefore, the solubility product constant [tex]\( K_{sp} \)[/tex] of the salt [tex]\( AB \)[/tex] at [tex]\( 25^{\circ}C \)[/tex] is:
[tex]\[ K_{sp} = 0.0016 \][/tex]
First, let's carefully understand and define the given parameters:
- At [tex]\( 25^{\circ} C \)[/tex], the solubility of the salt [tex]\( AB \)[/tex] in water is [tex]\( 0.0400 \, \text{mol/L} \)[/tex]. This means that at saturation, [tex]\( 0.0400 \, \text{mol/L} \)[/tex] of [tex]\( AB \)[/tex] dissolves in water.
Now, write the dissociation reaction for the salt [tex]\( AB \)[/tex]:
[tex]\[ \text{AB}(s) \rightleftharpoons \text{A}^+(aq) + \text{B}^-(aq) \][/tex]
Since the salt [tex]\( AB \)[/tex] dissociates into its constituent ions [tex]\( \text{A}^+ \)[/tex] and [tex]\( \text{B}^- \)[/tex], the concentrations of the ions in a saturated solution are both equal to the solubility of [tex]\( AB \)[/tex]. Therefore:
[tex]\[ [\text{A}^+] = 0.0400 \, \text{mol/L} \][/tex]
[tex]\[ [\text{B}^-] = 0.0400 \, \text{mol/L} \][/tex]
The solubility product constant [tex]\( K_{sp} \)[/tex] is calculated by multiplying the molar concentrations of the ions in the saturated solution:
[tex]\[ K_{sp} = [\text{A}^+][\text{B}^-] \][/tex]
Substitute the concentrations into the equation:
[tex]\[ K_{sp} = (0.0400 \, \text{mol/L}) \cdot (0.0400 \, \text{mol/L}) \][/tex]
[tex]\[ K_{sp} = 0.0400^2 \][/tex]
[tex]\[ K_{sp} = 0.0016 \][/tex]
Therefore, the solubility product constant [tex]\( K_{sp} \)[/tex] of the salt [tex]\( AB \)[/tex] at [tex]\( 25^{\circ}C \)[/tex] is:
[tex]\[ K_{sp} = 0.0016 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.