Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's solve this step by step.
First, let's carefully understand and define the given parameters:
- At [tex]\( 25^{\circ} C \)[/tex], the solubility of the salt [tex]\( AB \)[/tex] in water is [tex]\( 0.0400 \, \text{mol/L} \)[/tex]. This means that at saturation, [tex]\( 0.0400 \, \text{mol/L} \)[/tex] of [tex]\( AB \)[/tex] dissolves in water.
Now, write the dissociation reaction for the salt [tex]\( AB \)[/tex]:
[tex]\[ \text{AB}(s) \rightleftharpoons \text{A}^+(aq) + \text{B}^-(aq) \][/tex]
Since the salt [tex]\( AB \)[/tex] dissociates into its constituent ions [tex]\( \text{A}^+ \)[/tex] and [tex]\( \text{B}^- \)[/tex], the concentrations of the ions in a saturated solution are both equal to the solubility of [tex]\( AB \)[/tex]. Therefore:
[tex]\[ [\text{A}^+] = 0.0400 \, \text{mol/L} \][/tex]
[tex]\[ [\text{B}^-] = 0.0400 \, \text{mol/L} \][/tex]
The solubility product constant [tex]\( K_{sp} \)[/tex] is calculated by multiplying the molar concentrations of the ions in the saturated solution:
[tex]\[ K_{sp} = [\text{A}^+][\text{B}^-] \][/tex]
Substitute the concentrations into the equation:
[tex]\[ K_{sp} = (0.0400 \, \text{mol/L}) \cdot (0.0400 \, \text{mol/L}) \][/tex]
[tex]\[ K_{sp} = 0.0400^2 \][/tex]
[tex]\[ K_{sp} = 0.0016 \][/tex]
Therefore, the solubility product constant [tex]\( K_{sp} \)[/tex] of the salt [tex]\( AB \)[/tex] at [tex]\( 25^{\circ}C \)[/tex] is:
[tex]\[ K_{sp} = 0.0016 \][/tex]
First, let's carefully understand and define the given parameters:
- At [tex]\( 25^{\circ} C \)[/tex], the solubility of the salt [tex]\( AB \)[/tex] in water is [tex]\( 0.0400 \, \text{mol/L} \)[/tex]. This means that at saturation, [tex]\( 0.0400 \, \text{mol/L} \)[/tex] of [tex]\( AB \)[/tex] dissolves in water.
Now, write the dissociation reaction for the salt [tex]\( AB \)[/tex]:
[tex]\[ \text{AB}(s) \rightleftharpoons \text{A}^+(aq) + \text{B}^-(aq) \][/tex]
Since the salt [tex]\( AB \)[/tex] dissociates into its constituent ions [tex]\( \text{A}^+ \)[/tex] and [tex]\( \text{B}^- \)[/tex], the concentrations of the ions in a saturated solution are both equal to the solubility of [tex]\( AB \)[/tex]. Therefore:
[tex]\[ [\text{A}^+] = 0.0400 \, \text{mol/L} \][/tex]
[tex]\[ [\text{B}^-] = 0.0400 \, \text{mol/L} \][/tex]
The solubility product constant [tex]\( K_{sp} \)[/tex] is calculated by multiplying the molar concentrations of the ions in the saturated solution:
[tex]\[ K_{sp} = [\text{A}^+][\text{B}^-] \][/tex]
Substitute the concentrations into the equation:
[tex]\[ K_{sp} = (0.0400 \, \text{mol/L}) \cdot (0.0400 \, \text{mol/L}) \][/tex]
[tex]\[ K_{sp} = 0.0400^2 \][/tex]
[tex]\[ K_{sp} = 0.0016 \][/tex]
Therefore, the solubility product constant [tex]\( K_{sp} \)[/tex] of the salt [tex]\( AB \)[/tex] at [tex]\( 25^{\circ}C \)[/tex] is:
[tex]\[ K_{sp} = 0.0016 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.