Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To identify the domain and range of the function [tex]\( y = 3 \cdot 5^x \)[/tex], let's break it down step by step:
### Domain:
The domain of a function is the set of all possible input values (x-values) for which the function is defined.
1. The function [tex]\( y = 3 \cdot 5^x \)[/tex] includes an exponential expression [tex]\( 5^x \)[/tex].
2. The base of an exponential function can handle any real number exponent without any restrictions or undefined behavior.
Thus, there are no restrictions on [tex]\( x \)[/tex] in the function [tex]\( y = 3 \cdot 5^x \)[/tex]. Therefore, the domain is all real numbers.
Domain: all real numbers
### Range:
The range of a function is the set of all possible output values (y-values).
1. Consider the term [tex]\( 5^x \)[/tex]. For any real number [tex]\( x \)[/tex]:
- If [tex]\( x \)[/tex] is positive, [tex]\( 5^x \)[/tex] is a large positive number.
- If [tex]\( x \)[/tex] is negative, [tex]\( 5^x \)[/tex] is a small positive number because any positive number raised to a negative exponent is a positive fraction.
- If [tex]\( x \)[/tex] is 0, [tex]\( 5^0 = 1 \)[/tex], which is still a positive number.
2. Since [tex]\( 5^x \)[/tex] is always a positive number for any real [tex]\( x \)[/tex], multiplying it by 3 (a positive constant) still results in a positive number.
So, the function [tex]\( y = 3 \cdot 5^x \)[/tex] will always output positive values and can never be zero or negative.
Range: all positive real numbers
### Domain:
The domain of a function is the set of all possible input values (x-values) for which the function is defined.
1. The function [tex]\( y = 3 \cdot 5^x \)[/tex] includes an exponential expression [tex]\( 5^x \)[/tex].
2. The base of an exponential function can handle any real number exponent without any restrictions or undefined behavior.
Thus, there are no restrictions on [tex]\( x \)[/tex] in the function [tex]\( y = 3 \cdot 5^x \)[/tex]. Therefore, the domain is all real numbers.
Domain: all real numbers
### Range:
The range of a function is the set of all possible output values (y-values).
1. Consider the term [tex]\( 5^x \)[/tex]. For any real number [tex]\( x \)[/tex]:
- If [tex]\( x \)[/tex] is positive, [tex]\( 5^x \)[/tex] is a large positive number.
- If [tex]\( x \)[/tex] is negative, [tex]\( 5^x \)[/tex] is a small positive number because any positive number raised to a negative exponent is a positive fraction.
- If [tex]\( x \)[/tex] is 0, [tex]\( 5^0 = 1 \)[/tex], which is still a positive number.
2. Since [tex]\( 5^x \)[/tex] is always a positive number for any real [tex]\( x \)[/tex], multiplying it by 3 (a positive constant) still results in a positive number.
So, the function [tex]\( y = 3 \cdot 5^x \)[/tex] will always output positive values and can never be zero or negative.
Range: all positive real numbers
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.