Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine when the particle reaches its minimum velocity, we can follow these steps:
1. Define the position function:
The position of the particle is given by:
[tex]\[ x(t) = 2t^3 - 8t^2 + 12 \][/tex]
2. Find the velocity function:
The velocity is the first derivative of the position function with respect to time [tex]\( t \)[/tex]:
[tex]\[ v(t) = \frac{dx}{dt} = \frac{d}{dt}(2t^3 - 8t^2 + 12) \][/tex]
Calculating this derivative, we get:
[tex]\[ v(t) = 6t^2 - 16t \][/tex]
3. Find the acceleration function:
The acceleration is the first derivative of the velocity function with respect to time [tex]\( t \)[/tex]:
[tex]\[ a(t) = \frac{dv}{dt} = \frac{d}{dt}(6t^2 - 16t) \][/tex]
Calculating this derivative, we get:
[tex]\[ a(t) = 12t - 16 \][/tex]
4. Determine when the acceleration is zero:
To find the time when the velocity is at a minimum, we set the acceleration function to zero and solve for [tex]\( t \)[/tex]:
[tex]\[ 12t - 16 = 0 \][/tex]
Solving for [tex]\( t \)[/tex], we get:
[tex]\[ t = \frac{16}{12} = \frac{4}{3} \][/tex]
5. Verify that the velocity at this time is a minimum:
We use the second derivative test to confirm that we have a minimum. The second derivative of acceleration (or the third derivative of the position function) is:
[tex]\[ a''(t) = \frac{d^2v}{dt^2} = \frac{d}{dt}(12t - 16) = 12 \][/tex]
Since [tex]\( a''(t) = 12 \)[/tex] is a positive constant, [tex]\( t = \frac{4}{3} \)[/tex] is indeed a minimum.
Thus, the particle reaches its minimum velocity at [tex]\( t = \frac{4}{3} \)[/tex] seconds.
1. Define the position function:
The position of the particle is given by:
[tex]\[ x(t) = 2t^3 - 8t^2 + 12 \][/tex]
2. Find the velocity function:
The velocity is the first derivative of the position function with respect to time [tex]\( t \)[/tex]:
[tex]\[ v(t) = \frac{dx}{dt} = \frac{d}{dt}(2t^3 - 8t^2 + 12) \][/tex]
Calculating this derivative, we get:
[tex]\[ v(t) = 6t^2 - 16t \][/tex]
3. Find the acceleration function:
The acceleration is the first derivative of the velocity function with respect to time [tex]\( t \)[/tex]:
[tex]\[ a(t) = \frac{dv}{dt} = \frac{d}{dt}(6t^2 - 16t) \][/tex]
Calculating this derivative, we get:
[tex]\[ a(t) = 12t - 16 \][/tex]
4. Determine when the acceleration is zero:
To find the time when the velocity is at a minimum, we set the acceleration function to zero and solve for [tex]\( t \)[/tex]:
[tex]\[ 12t - 16 = 0 \][/tex]
Solving for [tex]\( t \)[/tex], we get:
[tex]\[ t = \frac{16}{12} = \frac{4}{3} \][/tex]
5. Verify that the velocity at this time is a minimum:
We use the second derivative test to confirm that we have a minimum. The second derivative of acceleration (or the third derivative of the position function) is:
[tex]\[ a''(t) = \frac{d^2v}{dt^2} = \frac{d}{dt}(12t - 16) = 12 \][/tex]
Since [tex]\( a''(t) = 12 \)[/tex] is a positive constant, [tex]\( t = \frac{4}{3} \)[/tex] is indeed a minimum.
Thus, the particle reaches its minimum velocity at [tex]\( t = \frac{4}{3} \)[/tex] seconds.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.