Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To provide a counterexample that proves the statement "If a number is divisible by 3, then it's odd" is false, we need to find a number that meets two criteria:
1. The number is divisible by 3.
2. The number is not odd (i.e., it is even).
Let's consider the number 6 as our potential counterexample.
1. Check if 6 is divisible by 3:
- A number is divisible by 3 if, when divided by 3, it results in an integer quotient with no remainder.
- Dividing 6 by 3 gives [tex]\( \frac{6}{3} = 2 \)[/tex].
- Since the quotient is an integer and there is no remainder, 6 is divisible by 3.
2. Check if 6 is odd:
- A number is odd if it is not divisible by 2; in other words, if divided by 2, it results in a non-integer quotient.
- Dividing 6 by 2 gives [tex]\( \frac{6}{2} = 3 \)[/tex].
- Since the quotient is an integer and there is no remainder, 6 is not odd; it is even.
Since the number 6 satisfies both criteria—it is divisible by 3 and it is even—it serves as a counterexample to the statement. This means that the original statement "If a number is divisible by 3, then it's odd" is false.
Thus, the counterexample is the number 6.
1. The number is divisible by 3.
2. The number is not odd (i.e., it is even).
Let's consider the number 6 as our potential counterexample.
1. Check if 6 is divisible by 3:
- A number is divisible by 3 if, when divided by 3, it results in an integer quotient with no remainder.
- Dividing 6 by 3 gives [tex]\( \frac{6}{3} = 2 \)[/tex].
- Since the quotient is an integer and there is no remainder, 6 is divisible by 3.
2. Check if 6 is odd:
- A number is odd if it is not divisible by 2; in other words, if divided by 2, it results in a non-integer quotient.
- Dividing 6 by 2 gives [tex]\( \frac{6}{2} = 3 \)[/tex].
- Since the quotient is an integer and there is no remainder, 6 is not odd; it is even.
Since the number 6 satisfies both criteria—it is divisible by 3 and it is even—it serves as a counterexample to the statement. This means that the original statement "If a number is divisible by 3, then it's odd" is false.
Thus, the counterexample is the number 6.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.