Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the given equations step-by-step.
### First Equation: [tex]\(\sqrt[x]{2}=2^x\)[/tex]
The given equation is [tex]\(\sqrt[x]{2} = 2^x\)[/tex]. We can rewrite [tex]\(\sqrt[x]{2}\)[/tex] as [tex]\(2^{1/x}\)[/tex]. So, the equation becomes:
[tex]\[ 2^{1/x} = 2^x \][/tex]
Since the bases are the same, we can equate the exponents:
[tex]\[ \frac{1}{x} = x \][/tex]
To solve for [tex]\(x\)[/tex], we multiply both sides by [tex]\(x\)[/tex]:
[tex]\[ 1 = x^2 \][/tex]
Now solve for [tex]\(x\)[/tex]:
[tex]\[ x^2 = 1 \][/tex]
[tex]\[ x = \pm 1 \][/tex]
Thus, the solutions for the first equation are:
[tex]\[ x = -1 \quad \text{and} \quad x = 1 \][/tex]
### Second Equation: [tex]\(2^{x-1}=4^5\)[/tex]
The given equation is [tex]\(2^{x-1} = 4^5\)[/tex]. We know that [tex]\(4\)[/tex] can be written as [tex]\(2^2\)[/tex], so the equation becomes:
[tex]\[ 2^{x-1} = (2^2)^5 \][/tex]
Simplify the right-hand side:
[tex]\[ 2^{x-1} = 2^{10} \][/tex]
Since the bases are the same, we can equate the exponents:
[tex]\[ x - 1 = 10 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ x = 10 + 1 \][/tex]
[tex]\[ x = 11 \][/tex]
Thus, the solution for the second equation is:
[tex]\[ x = 11 \][/tex]
### Summary of Solutions
- Solutions for [tex]\(\sqrt[x]{2}=2^x\)[/tex] are [tex]\(x = -1\)[/tex] and [tex]\(x = 1\)[/tex].
- Solution for [tex]\(2^{x-1}=4^5\)[/tex] is [tex]\(x = 11\)[/tex].
These are the complete solutions for the given equations.
### First Equation: [tex]\(\sqrt[x]{2}=2^x\)[/tex]
The given equation is [tex]\(\sqrt[x]{2} = 2^x\)[/tex]. We can rewrite [tex]\(\sqrt[x]{2}\)[/tex] as [tex]\(2^{1/x}\)[/tex]. So, the equation becomes:
[tex]\[ 2^{1/x} = 2^x \][/tex]
Since the bases are the same, we can equate the exponents:
[tex]\[ \frac{1}{x} = x \][/tex]
To solve for [tex]\(x\)[/tex], we multiply both sides by [tex]\(x\)[/tex]:
[tex]\[ 1 = x^2 \][/tex]
Now solve for [tex]\(x\)[/tex]:
[tex]\[ x^2 = 1 \][/tex]
[tex]\[ x = \pm 1 \][/tex]
Thus, the solutions for the first equation are:
[tex]\[ x = -1 \quad \text{and} \quad x = 1 \][/tex]
### Second Equation: [tex]\(2^{x-1}=4^5\)[/tex]
The given equation is [tex]\(2^{x-1} = 4^5\)[/tex]. We know that [tex]\(4\)[/tex] can be written as [tex]\(2^2\)[/tex], so the equation becomes:
[tex]\[ 2^{x-1} = (2^2)^5 \][/tex]
Simplify the right-hand side:
[tex]\[ 2^{x-1} = 2^{10} \][/tex]
Since the bases are the same, we can equate the exponents:
[tex]\[ x - 1 = 10 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ x = 10 + 1 \][/tex]
[tex]\[ x = 11 \][/tex]
Thus, the solution for the second equation is:
[tex]\[ x = 11 \][/tex]
### Summary of Solutions
- Solutions for [tex]\(\sqrt[x]{2}=2^x\)[/tex] are [tex]\(x = -1\)[/tex] and [tex]\(x = 1\)[/tex].
- Solution for [tex]\(2^{x-1}=4^5\)[/tex] is [tex]\(x = 11\)[/tex].
These are the complete solutions for the given equations.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.