Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the measure of the angle [tex]$\theta$[/tex] at which the surveyor stands using the given cosine values, we need to use the given inverse cosine (arccos) values. The arccos function helps us find an angle when we know its cosine value.
Here are the provided cosine values and their corresponding angles:
- [tex]\(\cos^{-1}(0.75) = 41^\circ\)[/tex]
- [tex]\(\cos^{-1}(0.125) = 83^\circ\)[/tex]
- [tex]\(\cos^{-1}(0.563) = 56^\circ\)[/tex]
- [tex]\(\cos^{-1}(0.15) = 89^\circ\)[/tex]
By looking at these relationships, we can conclude the following:
1. When the cosine value is [tex]\(0.75\)[/tex], the angle is [tex]\(41^\circ\)[/tex].
2. When the cosine value is [tex]\(0.125\)[/tex], the angle is [tex]\(83^\circ\)[/tex].
3. When the cosine value is [tex]\(0.563\)[/tex], the angle is [tex]\(56^\circ\)[/tex].
4. When the cosine value is [tex]\(0.15\)[/tex], the angle is [tex]\(89^\circ\)[/tex].
Thus, the measure of the angle at which the surveyor stands would be one of these values depending on the cosine value observed:
[tex]\[ 41^\circ, 83^\circ, 56^\circ, \text{or } 89^\circ \][/tex]
These angles are approximations to the nearest degree based on the given cosine values and their respective inverse cosine functions. Hence, the surveyor could be standing at any of these angles depending on the measured cosine value.
Here are the provided cosine values and their corresponding angles:
- [tex]\(\cos^{-1}(0.75) = 41^\circ\)[/tex]
- [tex]\(\cos^{-1}(0.125) = 83^\circ\)[/tex]
- [tex]\(\cos^{-1}(0.563) = 56^\circ\)[/tex]
- [tex]\(\cos^{-1}(0.15) = 89^\circ\)[/tex]
By looking at these relationships, we can conclude the following:
1. When the cosine value is [tex]\(0.75\)[/tex], the angle is [tex]\(41^\circ\)[/tex].
2. When the cosine value is [tex]\(0.125\)[/tex], the angle is [tex]\(83^\circ\)[/tex].
3. When the cosine value is [tex]\(0.563\)[/tex], the angle is [tex]\(56^\circ\)[/tex].
4. When the cosine value is [tex]\(0.15\)[/tex], the angle is [tex]\(89^\circ\)[/tex].
Thus, the measure of the angle at which the surveyor stands would be one of these values depending on the cosine value observed:
[tex]\[ 41^\circ, 83^\circ, 56^\circ, \text{or } 89^\circ \][/tex]
These angles are approximations to the nearest degree based on the given cosine values and their respective inverse cosine functions. Hence, the surveyor could be standing at any of these angles depending on the measured cosine value.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.