Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Find the terminal point on the unit circle determined by [tex]\(\frac{4\pi}{3}\)[/tex] radians. Use exact values, not decimal approximations.

Sagot :

To find the terminal point on the unit circle determined by an angle of [tex]\(\frac{4\pi}{3}\)[/tex] radians, we need to determine the coordinates [tex]\((x, y)\)[/tex] at this angle. The unit circle has a radius of 1, which implies that any point on the circle will satisfy the equation [tex]\(x^2 + y^2 = 1\)[/tex].

### Step-by-Step Solution:

1. Determine the angle on the unit circle:

The angle [tex]\(\frac{4\pi}{3}\)[/tex] radians is more than [tex]\(\pi\)[/tex] (180 degrees) but less than [tex]\(2\pi\)[/tex] (360 degrees). Since [tex]\(\frac{4\pi}{3} = \pi + \frac{\pi}{3}\)[/tex], we can see that this angle is [tex]\(\pi/3\)[/tex] radians past [tex]\(\pi\)[/tex].

2. Locate the angle in the correct quadrant:

- The angle [tex]\(\pi\)[/tex] radians is 180 degrees, which is the negative [tex]\(x\)[/tex]-axis.
- Adding [tex]\(\pi/3\)[/tex] to [tex]\(\pi\)[/tex] places the terminal point in the third quadrant.

3. Reference angle:

The reference angle for [tex]\(\frac{4\pi}{3}\)[/tex] is [tex]\(\pi/3\)[/tex].

4. Cosine and Sine values for the reference angle:

- [tex]\(\cos(\pi/3) = \frac{1}{2}\)[/tex]
- [tex]\(\sin(\pi/3) = \frac{\sqrt{3}}{2}\)[/tex]

5. Apply signs based on the quadrant:

In the third quadrant:
- The cosine value is negative.
- The sine value is also negative.

Thus:
- [tex]\(\cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}\)[/tex]
- [tex]\(\sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2}\)[/tex]

6. Determine the coordinates:

Based on the values from above, the coordinates [tex]\((x, y)\)[/tex] are:
- [tex]\(x = \cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}\)[/tex]
- [tex]\(y = \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2}\)[/tex]

Therefore, the terminal point on the unit circle determined by the angle [tex]\(\frac{4\pi}{3}\)[/tex] radians is [tex]\(\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.