Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To simplify the expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex] using a double-angle formula, we can follow these steps:
1. Recall the Double-Angle Formula for Sine:
The double-angle formula for sine states that:
[tex]\[ \sin(2a) = 2 \sin(a) \cos(a) \][/tex]
2. Identify the Given Expression:
We are given the expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex].
3. Match the Given Expression to the Double-Angle Formula:
Notice that the given expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex] matches the right-hand side of the double-angle formula [tex]\( \sin(2a) = 2 \sin(a) \cos(a) \)[/tex], where [tex]\( a = \frac{\pi}{7} \)[/tex].
4. Simplify Using the Double-Angle Formula:
Based on the formula, we can write:
[tex]\[ 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} = \sin \left( 2 \cdot \frac{\pi}{7} \right) \][/tex]
Simplify the argument of the sine function:
[tex]\[ 2 \cdot \frac{\pi}{7} = \frac{2\pi}{7} \][/tex]
5. Final Simplified Expression:
Therefore, the simplified form of the given expression is:
[tex]\[ \sin \frac{2\pi}{7} \][/tex]
6. Evaluate the Simplified Expression:
When evaluated, the value of [tex]\( \sin \frac{2\pi}{7} \)[/tex] is approximately:
[tex]\[ 0.7818314824680298 \][/tex]
Hence, the simplified expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex] equals [tex]\( \sin \frac{2\pi}{7} \)[/tex], and its numerical value is approximately [tex]\( 0.7818314824680298 \)[/tex].
1. Recall the Double-Angle Formula for Sine:
The double-angle formula for sine states that:
[tex]\[ \sin(2a) = 2 \sin(a) \cos(a) \][/tex]
2. Identify the Given Expression:
We are given the expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex].
3. Match the Given Expression to the Double-Angle Formula:
Notice that the given expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex] matches the right-hand side of the double-angle formula [tex]\( \sin(2a) = 2 \sin(a) \cos(a) \)[/tex], where [tex]\( a = \frac{\pi}{7} \)[/tex].
4. Simplify Using the Double-Angle Formula:
Based on the formula, we can write:
[tex]\[ 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} = \sin \left( 2 \cdot \frac{\pi}{7} \right) \][/tex]
Simplify the argument of the sine function:
[tex]\[ 2 \cdot \frac{\pi}{7} = \frac{2\pi}{7} \][/tex]
5. Final Simplified Expression:
Therefore, the simplified form of the given expression is:
[tex]\[ \sin \frac{2\pi}{7} \][/tex]
6. Evaluate the Simplified Expression:
When evaluated, the value of [tex]\( \sin \frac{2\pi}{7} \)[/tex] is approximately:
[tex]\[ 0.7818314824680298 \][/tex]
Hence, the simplified expression [tex]\( 2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \)[/tex] equals [tex]\( \sin \frac{2\pi}{7} \)[/tex], and its numerical value is approximately [tex]\( 0.7818314824680298 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.