Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's provide a detailed, step-by-step solution to justify Mariah's statement.
Mariah states that the expression [tex]\( 5\left(-\frac{1}{3}\right)\left(-\frac{1}{5}\right)(-9) \)[/tex] is equivalent to [tex]\(-1 \times 3\)[/tex]. Let's see if her statement holds true.
Step-by-Step Solution:
1. Rewrite the expression: Start with the given expression:
[tex]\[ 5 \left( -\frac{1}{3} \right) \left( -\frac{1}{5} \right) (-9) \][/tex]
2. Combine the fractions: We want to simplify step by step. First, consider the product of the fractions:
[tex]\[ -\frac{1}{3} \times -\frac{1}{5} = \frac{1}{15} \][/tex]
3. Incorporate the 5:
[tex]\[ 5 \times \frac{1}{15} = \frac{5}{15} = \frac{1}{3} \][/tex]
So the expression becomes:
[tex]\[ \frac{1}{3} \times (-9) \][/tex]
4. Multiply by -9:
[tex]\[ \frac{1}{3} \times (-9) = -3 \][/tex]
5. Relate this to [tex]\(-1 \times 3\)[/tex]: Notice:
[tex]\[ -3 \text{ is the same as } -1 \times 3 \][/tex]
Now, let's fill in the blanks as per the required format:
Sentence 1:
- You can multiply 5 by [tex]\(\boxed{-\frac{1}{5}}\)[/tex] to get -1.
Why? Because [tex]\(5 \times -\frac{1}{5} = -1\)[/tex].
Sentence 2:
- You can multiply [tex]\(\boxed{-\frac{1}{3}}\)[/tex] by [tex]\(\boxed{-3}\)[/tex] to get 3.
Why? Because [tex]\(-\frac{1}{3} \times -3 = 1\)[/tex]. Since we incorporate the product with 9 in the next step, think of the combined multiplication.
Sentence 3:
- The final product is [tex]\( -1 \times 3 = \boxed{-3} \)[/tex].
Putting it all together, Mariah's statement is correctly justified. The product of [tex]\(5\left(-\frac{1}{3}\right)\left(-\frac{1}{5}\right)(-9)\)[/tex] indeed simplifies to [tex]\(-3\)[/tex], which is equivalent to [tex]\(-1 \times 3\)[/tex].
Mariah states that the expression [tex]\( 5\left(-\frac{1}{3}\right)\left(-\frac{1}{5}\right)(-9) \)[/tex] is equivalent to [tex]\(-1 \times 3\)[/tex]. Let's see if her statement holds true.
Step-by-Step Solution:
1. Rewrite the expression: Start with the given expression:
[tex]\[ 5 \left( -\frac{1}{3} \right) \left( -\frac{1}{5} \right) (-9) \][/tex]
2. Combine the fractions: We want to simplify step by step. First, consider the product of the fractions:
[tex]\[ -\frac{1}{3} \times -\frac{1}{5} = \frac{1}{15} \][/tex]
3. Incorporate the 5:
[tex]\[ 5 \times \frac{1}{15} = \frac{5}{15} = \frac{1}{3} \][/tex]
So the expression becomes:
[tex]\[ \frac{1}{3} \times (-9) \][/tex]
4. Multiply by -9:
[tex]\[ \frac{1}{3} \times (-9) = -3 \][/tex]
5. Relate this to [tex]\(-1 \times 3\)[/tex]: Notice:
[tex]\[ -3 \text{ is the same as } -1 \times 3 \][/tex]
Now, let's fill in the blanks as per the required format:
Sentence 1:
- You can multiply 5 by [tex]\(\boxed{-\frac{1}{5}}\)[/tex] to get -1.
Why? Because [tex]\(5 \times -\frac{1}{5} = -1\)[/tex].
Sentence 2:
- You can multiply [tex]\(\boxed{-\frac{1}{3}}\)[/tex] by [tex]\(\boxed{-3}\)[/tex] to get 3.
Why? Because [tex]\(-\frac{1}{3} \times -3 = 1\)[/tex]. Since we incorporate the product with 9 in the next step, think of the combined multiplication.
Sentence 3:
- The final product is [tex]\( -1 \times 3 = \boxed{-3} \)[/tex].
Putting it all together, Mariah's statement is correctly justified. The product of [tex]\(5\left(-\frac{1}{3}\right)\left(-\frac{1}{5}\right)(-9)\)[/tex] indeed simplifies to [tex]\(-3\)[/tex], which is equivalent to [tex]\(-1 \times 3\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.