Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's transform the given ordered pair [tex]\((1, -3)\)[/tex] through the described transformations step-by-step.
### Step 1: Reflection over the y-axis
To reflect a point over the y-axis, we change the sign of the x-coordinate while keeping the y-coordinate the same:
- Original Point: [tex]\((1, -3)\)[/tex]
- Reflected Point: [tex]\((-1, -3)\)[/tex]
### Step 2: Scaling by a factor of 2
Next, we scale the reflected coordinates by a factor of 2. This means we multiply both the x and y coordinates by 2:
- Reflected Point: [tex]\((-1, -3)\)[/tex]
- Transformed Point: [tex]\((-2 \cdot (-1), 2 \cdot (-3))\)[/tex]
So, after we multiply:
- Transformed Coordinates: [tex]\((-2, -6)\)[/tex]
### Summary
1. Reflection over the y-axis:
- From [tex]\((1, -3)\)[/tex] to [tex]\((-1, -3)\)[/tex]
2. Scaling by a factor of 2:
- From [tex]\((-1, -3)\)[/tex] to [tex]\((-2, -6)\)[/tex]
Therefore, the final transformed image of the original point [tex]\((1, -3)\)[/tex] through the composition [tex]\(D_2 \circ R_{\text{y-axis}}\)[/tex] will be:
[tex]\[ (-2, -6) \][/tex]
Additionally, the intermediate reflected coordinates are [tex]\((-1, -3)\)[/tex].
### Step 1: Reflection over the y-axis
To reflect a point over the y-axis, we change the sign of the x-coordinate while keeping the y-coordinate the same:
- Original Point: [tex]\((1, -3)\)[/tex]
- Reflected Point: [tex]\((-1, -3)\)[/tex]
### Step 2: Scaling by a factor of 2
Next, we scale the reflected coordinates by a factor of 2. This means we multiply both the x and y coordinates by 2:
- Reflected Point: [tex]\((-1, -3)\)[/tex]
- Transformed Point: [tex]\((-2 \cdot (-1), 2 \cdot (-3))\)[/tex]
So, after we multiply:
- Transformed Coordinates: [tex]\((-2, -6)\)[/tex]
### Summary
1. Reflection over the y-axis:
- From [tex]\((1, -3)\)[/tex] to [tex]\((-1, -3)\)[/tex]
2. Scaling by a factor of 2:
- From [tex]\((-1, -3)\)[/tex] to [tex]\((-2, -6)\)[/tex]
Therefore, the final transformed image of the original point [tex]\((1, -3)\)[/tex] through the composition [tex]\(D_2 \circ R_{\text{y-axis}}\)[/tex] will be:
[tex]\[ (-2, -6) \][/tex]
Additionally, the intermediate reflected coordinates are [tex]\((-1, -3)\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.