Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze the trigonometric equation given:
[tex]\[ y = \frac{1}{3} \cos (x + 6) \][/tex]
### Amplitude
The amplitude of a trigonometric function of the form [tex]\( y = A \cos(Bx + C) \)[/tex] or [tex]\( y = A \sin(Bx + C) \)[/tex] is the factor [tex]\( A \)[/tex] in front of the cosine or sine function.
In this equation [tex]\( y = \frac{1}{3} \cos (x + 6) \)[/tex]:
- The amplitude [tex]\( A \)[/tex] is [tex]\(\frac{1}{3}\)[/tex].
### Period
The period of a cosine function [tex]\( y = \cos(Bx + C) \)[/tex] is determined by the coefficient [tex]\( B \)[/tex] in front of [tex]\( x \)[/tex]. The formula for the period [tex]\( T \)[/tex] is:
[tex]\[ T = \frac{2\pi}{B} \][/tex]
In this equation, [tex]\( y = \frac{1}{3} \cos (x + 6) \)[/tex]:
- The coefficient [tex]\( B \)[/tex] of [tex]\( x \)[/tex] is 1.
- Therefore, the period [tex]\( T \)[/tex] is:
[tex]\[ T = \frac{2\pi}{1} = 2\pi \][/tex]
### Phase Shift
The phase shift of the equation [tex]\( y = A \cos(Bx + C) \)[/tex] is determined by the term [tex]\( \frac{C}{B} \)[/tex]. The phase shift direction depends on the sign of [tex]\( C \)[/tex]:
- If [tex]\( C \)[/tex] is positive, the graph is shifted to the left.
- If [tex]\( C \)[/tex] is negative, the graph is shifted to the right.
In this equation, [tex]\( y = \frac{1}{3} \cos (x + 6) \)[/tex]:
- The term inside the cosine function is [tex]\( (x + 6) \)[/tex], where [tex]\( C = 6 \)[/tex].
- The phase shift is:
[tex]\[ \frac{C}{B} = \frac{6}{1} = 6 \][/tex]
Since [tex]\( C \)[/tex] is positive, the phase shift is [tex]\( 6 \)[/tex] units to the left.
### Summary
- Amplitude: [tex]\(\frac{1}{3}\)[/tex]
- Period: [tex]\(2\pi\)[/tex]
- Phase Shift: Shifted to the left by 6 units
[tex]\[ y = \frac{1}{3} \cos (x + 6) \][/tex]
### Amplitude
The amplitude of a trigonometric function of the form [tex]\( y = A \cos(Bx + C) \)[/tex] or [tex]\( y = A \sin(Bx + C) \)[/tex] is the factor [tex]\( A \)[/tex] in front of the cosine or sine function.
In this equation [tex]\( y = \frac{1}{3} \cos (x + 6) \)[/tex]:
- The amplitude [tex]\( A \)[/tex] is [tex]\(\frac{1}{3}\)[/tex].
### Period
The period of a cosine function [tex]\( y = \cos(Bx + C) \)[/tex] is determined by the coefficient [tex]\( B \)[/tex] in front of [tex]\( x \)[/tex]. The formula for the period [tex]\( T \)[/tex] is:
[tex]\[ T = \frac{2\pi}{B} \][/tex]
In this equation, [tex]\( y = \frac{1}{3} \cos (x + 6) \)[/tex]:
- The coefficient [tex]\( B \)[/tex] of [tex]\( x \)[/tex] is 1.
- Therefore, the period [tex]\( T \)[/tex] is:
[tex]\[ T = \frac{2\pi}{1} = 2\pi \][/tex]
### Phase Shift
The phase shift of the equation [tex]\( y = A \cos(Bx + C) \)[/tex] is determined by the term [tex]\( \frac{C}{B} \)[/tex]. The phase shift direction depends on the sign of [tex]\( C \)[/tex]:
- If [tex]\( C \)[/tex] is positive, the graph is shifted to the left.
- If [tex]\( C \)[/tex] is negative, the graph is shifted to the right.
In this equation, [tex]\( y = \frac{1}{3} \cos (x + 6) \)[/tex]:
- The term inside the cosine function is [tex]\( (x + 6) \)[/tex], where [tex]\( C = 6 \)[/tex].
- The phase shift is:
[tex]\[ \frac{C}{B} = \frac{6}{1} = 6 \][/tex]
Since [tex]\( C \)[/tex] is positive, the phase shift is [tex]\( 6 \)[/tex] units to the left.
### Summary
- Amplitude: [tex]\(\frac{1}{3}\)[/tex]
- Period: [tex]\(2\pi\)[/tex]
- Phase Shift: Shifted to the left by 6 units
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.