Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Given the ordered pair (1, -3), where will the transformed image be after the following composition: [tex]\( D_2 \circ R_{y-axis} \)[/tex]?

A. [tex]\((2, -6)\)[/tex]
B. [tex]\((-2, -6)\)[/tex]
C. [tex]\((2, 6)\)[/tex]
D. [tex]\((-2, 6)\)[/tex]


Sagot :

Let's solve this problem step-by-step by applying the transformations to the given ordered pair [tex]\((1, -3)\)[/tex].

1. Reflection over the y-axis [tex]\( R_{y \text{-axis}} \)[/tex]:
- Reflection over the y-axis changes the sign of the x-coordinate while keeping the y-coordinate the same.
- So, reflecting the point [tex]\((1, -3)\)[/tex] over the y-axis gives us:
[tex]\[ (-1, -3) \][/tex]

2. Dilation [tex]\( D_2 \)[/tex]:
- A dilation by a factor of 2, denoted as [tex]\( D_2 \)[/tex], scales both the x and y coordinates by 2.
- Applying this dilation to the reflected point [tex]\((-1, -3)\)[/tex] results in:
[tex]\[ (2 \cdot -1, 2 \cdot -3) = (-2, -6) \][/tex]

Thus, after performing the reflection over the y-axis followed by the dilation by a factor of 2, the transformed image of the point [tex]\((1, -3)\)[/tex] will be [tex]\(\boxed{(-2, -6)}\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.